The Schur-Agler class consists of functions over a domain satisfying an appropriate von Neumann inequality. Originally defined over the polydisk, the idea has been extended to general domains in multivariable complex Euclidean space with matrix polynomial defining function as well as to certain multivariable noncommutative-operator domains with a noncommutative linear-pencil defining function. Still more recently there has emerged a free noncommutative function theory (functions of noncommuting matrix variables respecting direct sums and similarity transformations). The purpose of the present paper is to extend the Schur-Agler-class theory to the free noncommutative function setting. This includes the positive-kernel-decomposition characterization of the class, transfer-function realization and Pick interpolation theory. A special class of defining functions is identified for which the associated Schur-Agler class coincides with the contractive-multiplier class on an associated noncommutative reproducing kernel Hilbert space; in this case, solution of the Pick interpolation problem is in terms of the complete positivity of an associated Pick matrix which is explicitly determined from the interpolation data.1991 Mathematics Subject Classification. 47B32; 47A60.
Abstract. The theory of positive kernels and associated reproducing kernel Hilbert spaces, especially in the setting of holomorphic functions, has been an important tool for the last several decades in a number of areas of complex analysis and operator theory. An interesting generalization of holomorphic functions, namely free noncommutative functions (e.g., functions of square-matrix arguments of arbitrary size satisfying additional natural compatibility conditions), is now an active area of research, with motivation and applications from a variety of areas (e.g., noncommutative functional calculus, free probability, and optimization theory in linear systems engineering). The purpose of this article is to develop a theory of positive kernels and associated reproducing kernel Hilbert spaces for the setting of free noncommutative function theory.
We discuss a (i) quantized version of the Jordan decomposition theorem for a complex Borel measure on a compact Hausdorff space, namely, the more general problem of decomposing a general noncommutative kernel (a quantization of the standard notion of kernel function) as a linear combination of completely positive noncommutative kernels (a quantization of the standard notion of positive definite kernel). Other special cases of (i) include: the problem of decomposing a general operator-valued kernel function as a linear combination of positive kernels (not always possible), of decomposing a general bounded linear Hilbert-space operator as a linear combination of positive linear operators (always possible), of decomposing a completely bounded linear map from a C * -algebra A to an injective C * -algebra L(Y) as a linear combination of completely positive maps from A to L(Y) (always possible). We also discuss (ii) a noncommutative kernel generalization of the Arveson extension theorem (any completely positive map φ from a operator system S to an injective C * -algebra L(Y) can be extended to a completely positive map φe from a C * -algebra containing S to L(Y)), and (iii) a noncommutative kernel version of a Positivstellensatz (i.e., finding a certificate to explain why one kernel is positive at points where another given kernel is positive).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.