The quantum annealing devices, which encode the solution to a computational problem in the ground state of a quantum Hamiltonian, are implemented in D-Wave systems with more than 2,000 qubits. However, quantum annealing can solve only a classical combinatorial optimization problem such as an Ising model, or equivalently, a quadratic unconstrained binary optimization (QUBO) problem. In this paper, we formulate the QUBO model to solve elliptic problems with Dirichlet and Neumann boundary conditions using the finite element method. In this formulation, we develop the objective function of quadratic binary variables represented by qubits and the system finds the binary string combination minimizing the objective function globally. Based on the QUBO formulation, we introduce an iterative algorithm to solve the elliptic problems. We discuss the validation of the modeling on the D-Wave quantum annealing system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.