This review proposes that physical inactivity could be considered a behavior selected by evolution for resting, and also selected to be reinforcing in life-threatening situations in which exercise would be dangerous. Underlying the notion are human twin studies and animal selective breeding studies, both of which provide indirect evidence for the existence of genes for physical inactivity. Approximately 86% of the 325 million in the United States (U.S.) population achieve less than the U.S. Government and World Health Organization guidelines for daily physical activity for health. Although underappreciated, physical inactivity is an actual contributing cause to at least 35 unhealthy conditions, including the majority of the 10 leading causes of death in the U.S. First, we introduce nine physical inactivity-related themes. Next, characteristics and models of physical inactivity are presented. Following next are individual examples of phenotypes, organ systems, and diseases that are impacted by physical inactivity, including behavior, central nervous system, cardiorespiratory fitness, metabolism, adipose tissue, skeletal muscle, bone, immunity, digestion, and cancer. Importantly, physical inactivity, itself, often plays an independent role as a direct cause of speeding the losses of cardiovascular and strength fitness, shortening of healthspan, and lowering of the age for the onset of the first chronic disease, which in turn decreases quality of life, increases health care costs, and accelerates mortality risk.
Overwhelming evidence exists that lifelong exercise is associated with a longer health span, delaying the onset of 40 chronic conditions/diseases. What is beginning to be learned is the molecular mechanisms by which exercise sustains and improves quality of life. The current review begins with two short considerations. The first short presentation concerns the effects of endurance exercise training on cardiovascular fitness, and how it relates to improved health outcomes. The second short section contemplates emerging molecular connections from endurance training to mental health. Finally, approximately half of the remaining review concentrates on the relationships between type 2 diabetes, mitochondria, and endurance training. It is now clear that physical training is complex biology, invoking polygenic interactions within cells, tissues/organs, systems, with remarkable cross talk occurring among the former list.
Diabetes profoundly alters fuel metabolism; both insulin deficiency and insulin resistance are characterized by inefficient mitochondrial coupling and excessive production of reactive oxygen species (ROS) despite their association with normal to high oxygen consumption. Altered mitochondrial function in diabetes can be traced to insulin's pivotal role in maintaining mitochondrial proteome abundance and quality by enhancing mitochondrial biogenesis and preventing proteome damage and degradation, respectively. Although insulin enhances gene transcription, it also induces decreases in amino acids. Thus, if amino acid depletion is not corrected, increased transcription will not result in enhanced translation of transcripts to proteins. Mitochondrial biology varies among tissues, and although most studies in humans are performed in skeletal muscle, abnormalities have been reported in multiple organs in preclinical models of diabetes. Nutrient excess, especially fat excess, alters mitochondrial physiology by driving excess ROS emission that impairs insulin action. Excessive ROS irreversibly damages DNA and proteome with adverse effects on cellular functions. In insulin-resistant people, aerobic exercise stimulates both mitochondrial biogenesis and efficiency concurrent with enhancement of insulin action. This Review discusses the association between both insulin-deficient and insulin-resistant diabetes and alterations in mitochondrial proteome homeostasis and function that adversely affect cellular functions, likely contributing to many diabetic complications.
Diet-induced insulin resistance (IR) adversely affects human health and life span. We show that muscle-specific overexpression of human mitochondrial transcription factor A (TFAM) attenuates high-fat diet (HFD)–induced fat gain and IR in mice in conjunction with increased energy expenditure and reduced oxidative stress. These TFAM effects on muscle are shown to be exerted by molecular changes that are beyond its direct effect on mitochondrial DNA replication and transcription. TFAM augmented the muscle tricarboxylic acid cycle and citrate synthase facilitating energy expenditure. TFAM enhanced muscle glucose uptake despite increased fatty acid (FA) oxidation in concert with higher β-oxidation capacity to reduce the accumulation of IR-related carnitines and ceramides. TFAM also increased pAMPK expression, explaining enhanced PGC1α and PPARβ, and reversing HFD-induced GLUT4 and pAKT reductions. TFAM-induced mild uncoupling is shown to protect mitochondrial membrane potential against FA-induced uncontrolled depolarization. These coordinated changes conferred protection to TFAM mice against HFD-induced obesity and IR while reducing oxidative stress with potential translational opportunities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.