Measurements on unstrained linear and weakly strained large (> or =340 bp) circular DNAs yield torsional rigidities in the range C = 170-230 fJ fm. However, larger values, in the range C = 270-420 fJ fm, are typically obtained from measurements on sufficiently small (< or =247 bp) circular DNAs, and values in the range C = 300-450 fJ fm are obtained from experiments on linear DNAs under tension. A new method is proposed to estimate torsional rigidities of weakly supercoiled circular DNAs. Monte Carlo simulations of the supercoiling free energies of solution DNAs, and also of the structures of surface-confined supercoiled plasmids, were performed using different trial values of C. The results are compared with experimental measurements of the twist energy parameter, E(T), that governs the supercoiling free energy, and also with atomic force microscopy images of surface-confined plasmids. The results clearly demonstrate that C-values in the range 170-230 fJ fm are compatible with experimental observations, whereas values in the range C > or = 269 fJ fm, are incompatible with those same measurements. These results strongly suggest that the secondary structure of DNA is altered by either sufficient coherent bending strain or sufficient tension so as to enhance its torsional rigidity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.