Since publication of the first Thermotogales genome, Thermotoga maritima strain MSB8, single-and multi-gene analyses have disagreed on the phylogenetic position of this order of Bacteria. Here we present the genome sequences of 4 additional members of the Thermotogales (Tt. petrophila, Tt. lettingae, Thermosipho melanesiensis, and Fervidobacterium nodosum) and a comprehensive comparative analysis including the original T. maritima genome. While ribosomal protein genes strongly place Thermotogales as a sister group to Aquificales, the majority of genes with sufficient phylogenetic signal show affinities to Archaea and Firmicutes, especially Clostridia. Indeed, on the basis of the majority of genes in their genomes (including genes that are also found in Aquificales), Thermotogales should be considered members of the Firmicutes. This result highlights the conflict between the taxonomic goal of assigning every species to a unique position in an inclusive Linnaean hierarchy and the evolutionary goal of understanding phylogenesis in the presence of pervasive horizontal gene transfer (HGT) within prokaryotes. Amino acid compositions of reconstructed ancestral sequences from 423 gene families suggest an origin of this gene pool even more thermophilic than extant members of this order, followed by adaptation to lower growth temperatures within the Thermotogales.classification ͉ horizontal (lateral) gene transfer ͉ thermoadaptation ͉ taxonomy ͉ phylogenomic
The end-Permian extinction is associated with a mysterious disruption to Earth's carbon cycle. Here we identify causal mechanisms via three observations. First, we show that geochemical signals indicate superexponential growth of the marine inorganic carbon reservoir, coincident with the extinction and consistent with the expansion of a new microbial metabolic pathway. Second, we show that the efficient acetoclastic pathway in Methanosarcina emerged at a time statistically indistinguishable from the extinction. Finally, we show that nickel concentrations in South China sediments increased sharply at the extinction, probably as a consequence of massive Siberian volcanism, enabling a methanogenic expansion by removal of nickel limitation. Collectively, these results are consistent with the instigation of Earth's greatest mass extinction by a specific microbial innovation. methanogenesis | horizontal gene transfer | microbial evolution |
Microbial methanogenesis may have been a major component of Earth's carbon cycle during the Archaean eon, generating a methane greenhouse that increased global temperatures enough for a liquid hydrosphere, despite the Sun's lower luminosity at the time. Evaluation of potential solutions to the 'faint young Sun' hypothesis by determining the age of microbial methanogenesis has been limited by ambiguous geochemical evidence and the absence of a diagnostic fossil record. To overcome these challenges, we use a temporal constraint: a horizontal gene transfer event from within archaeal methanogens to the ancestor of Cyanobacteria, one of the few microbial clades with recognized crown-group fossils. Results of molecular clock analyses calibrated by this horizontal-gene-transfer-propagated constraint show methanogens diverging within Euryarchaeota no later than 3.51 billion years ago, with methanogenesis itself probably evolving earlier. This timing provides independent support for scenarios wherein microbial methane production was important in maintaining temperatures on the early Earth.
Phototrophic bacteria are among the most biogeochemically significant organisms on Earth and are physiologically related through the use of reaction centers to collect photons for energy metabolism. However, the major phototrophic lineages are not closely related to one another in bacterial phylogeny, and the origins of their respective photosynthetic machinery remain obscured by time and low sequence similarity. To better understand the co‐evolution of Cyanobacteria and other ancient anoxygenic phototrophic lineages with respect to geologic time, we designed and implemented a variety of molecular clocks that use horizontal gene transfer (HGT) as additional, relative constraints. These HGT constraints improve the precision of phototroph divergence date estimates and indicate that stem green non‐sulfur bacteria are likely the oldest phototrophic lineage. Concurrently, crown Cyanobacteria age estimates ranged from 2.2 Ga to 2.7 Ga, with stem Cyanobacteria diverging ~2.8 Ga. These estimates provide a several hundred Ma window for oxygenic photosynthesis to evolve prior to the Great Oxidation Event (GOE) ~2.3 Ga. In all models, crown green sulfur bacteria diversify after the loss of the banded iron formations from the sedimentary record (~1.8 Ga) and may indicate the expansion of the lineage into a new ecological niche following the GOE. Our date estimates also provide a timeline to investigate the temporal feasibility of different photosystem HGT events between phototrophic lineages. Using this approach, we infer that stem Cyanobacteria are unlikely to be the recipient of an HGT of photosystem I proteins from green sulfur bacteria but could still have been either the HGT donor or the recipient of photosystem II proteins with green non‐sulfur bacteria, prior to the GOE. Together, these results indicate that HGT‐constrained molecular clocks are useful tools for the evaluation of various geological and evolutionary hypotheses, using the evolutionary histories of both genes and organismal lineages.
The Record of Precambrian Steroidal HydrocarbonsThe record of sterane and triterpane hydrocarbon biomarkers in Archean and Proterozoic sedimentary rocks has come under extremely thorough scrutiny in recent times. Concerns about contamination, and doubts about reports of steroidal hydrocarbons in the 2.7 billion year-old Fortescue Group sediments of the Pilbara Craton (Brocks et al., 1999), were initially raised in 2003(Brocks et al., 2003. These potential problems became increasingly difficult to dismiss when new and improved types of geochemical analyses were devised and applied. For example, Brocks and colleagues showed that a selection of rock and sediment samples from a range of localities were ubiquitously contaminated with petroleum-and plastic-derived organic compounds . Analyses of thin slices of sediment core showed that spatial distributions of hydrocarbons could be used to distinguish indigenous hydrocarbons from surface contaminants in Archean shales (Brocks, 2011). In another example, the carbon isotopic data values of in situ and insoluble kerogen and pyrobitumen in rock formations that had previously yielded biomarkers were discrepant from those of the extractable hydrocarbons, meaning that the latter could not be indigenous (Rasmussen et al., 2008).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.