In macroscopic organisms, aging is often obvious; in single-celled organisms, where there is the greatest potential to identify the molecular mechanisms involved, identifying and quantifying aging is harder. The primary results in this area have come from organisms that share the traits of a visibly asymmetric division and an identifiable juvenile phase. As reproductive aging must require a differential distribution of aged and young components between parent and offspring, it has been postulated that organisms without these traits do not age, thus exhibiting functional immortality. Through automated time-lapse microscopy, we followed repeated cycles of reproduction by individual cells of the model organism Escherichia coli, which reproduces without a juvenile phase and with an apparently symmetric division. We show that the cell that inherits the old pole exhibits a diminished growth rate, decreased offspring production, and an increased incidence of death. We conclude that the two supposedly identical cells produced during cell division are functionally asymmetric; the old pole cell should be considered an aging parent repeatedly producing rejuvenated offspring. These results suggest that no life strategy is immune to the effects of aging, and therefore immortality may be either too costly or mechanistically impossible in natural organisms.
Deinococcus radiodurans' extreme resistance to ionizing radiation, desiccation, and DNA-damaging chemicals involves a robust DNA repair that reassembles its shattered genome. The repair process requires diploidy and commences with an extensive exonucleolytic erosion of DNA fragments. Liberated single-stranded overhangs prime strand elongation on overlapping fragments and the elongated complementary strands reestablish chromosomal contiguity by annealing. We explored the interdependence of the DNA recombination and replication processes in the reconstitution of the D. radiodurans genome disintegrated by ionizing radiation. The priming of extensive DNA repair synthesis involves RecA and RadA proteins. DNA polymerase III is essential for the initiation of repair synthesis, whereas efficient elongation requires DNA polymerases I and III. Inactivation of both polymerases leads to degradation of DNA fragments and rapid cell death. The present in vivo characterization of key recombination and replication processes dissects the mechanism of DNA repair in heavily irradiated D. radiodurans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.