We demonstrate the use of transverse translation-diverse phase retrieval as a method for the measurement of wavefronts in situations where the detected intensity patterns would be otherwise undersampled. This technique involves using a smaller moving subaperture to produce a number of adequately sampled intensity patterns. The wavefront is then retrieved using an optimization jointly constrained by them. Expressions for the gradient of an error metric with respect to the optimization parameters are given. An experimental arrangement used to measure the transmitted wavefront of a plano-convex singlet using this technique is described. The results of these measurements were repeatable to within approximately lambda/100 RMS.
We have successfully demonstrated an integrated optical system for collecting the fluorescence from a trapped ion. The system, consisting of an array of transmissive, dielectric micro-optics and an optical fiber array, has been intimately incorporated into the ion-trapping chip without negatively impacting trapping performance. Epoxies, vacuum feedthrough, and optical component materials were carefully chosen so that they did not degrade the vacuum environment, and we have demonstrated light detection as well as ion trapping and shuttling behavior comparable to trapping chips without integrated optics, with no modification to the control voltages of the trapping chip.Integration of fluorescence collection optics with a microfabricated surface electrode ion trap
Techniques for retrieving the phase of an optical field typically depend on assumptions about the amplitude of the field in a desired plane, usually a pupil plane. We describe an approach that makes no such assumptions and is capable of retrieving both the amplitude and phase in the desired plane. Intensity measurements in two or more planes are used by a nonlinear optimization algorithm to retrieve the phase in the measurement planes. The complex field (amplitude and phase) in the desired plane is then computed by simple propagation. We show simulation results and examine the convergence of the algorithm.
The James Webb Space Telescope (JWST) is a large, infrared space telescope that has recently started its science program which will enable breakthroughs in astrophysics and planetary science. Notably, JWST will provide the very first observations of the earliest luminous objects in the universe and start a new era of exoplanet atmospheric characterization. This transformative science is enabled by a 6.6 m telescope that is passively cooled with a 5 layer sunshield. The primary mirror is comprised of 18 controllable, low areal density hexagonal segments, that were aligned and phased relative to each other in orbit using innovative image-based wave front sensing and control algorithms. This revolutionary telescope took more than two decades to develop with a widely distributed team across engineering disciplines. We present an overview of the telescope requirements, architecture, development, superb on-orbit performance, and lessons learned. JWST successfully demonstrates a segmented aperture space telescope and establishes a path to building even larger space telescopes.
We discuss the use of parametric phase-diverse phase retrieval as an in-situ high-fidelity wavefront measurement method to characterize and optimize the transmitted wavefront of a high-contrast coronagraphic instrument. We apply our method to correct the transmitted wavefront of the HiCAT (High contrast imager for Complex Aperture Telescopes) coronagraphic testbed. This correction requires a series of calibration steps, which we describe. The correction improves the system wavefront from 16 nm RMS to 3.0 nm RMS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.