The function and survival of all organisms is dependent on the dynamic control of energy metabolism, when energy demand is matched to energy supply. The AMP-activated protein kinase (AMPK) αβγ heterotrimer has emerged as an important integrator of signals that control energy balance through the regulation of multiple biochemical pathways in all eukaryotes. In this review, we begin with the discovery of the AMPK family and discuss the recent structural studies that have revealed the molecular basis for AMP binding to the enzyme's γ subunit. AMPK's regulation involves autoinhibitory features and phosphorylation of both the catalytic α subunit and the β-targeting subunit. We review the role of AMPK at the cellular level through examination of its many substrates and discuss how it controls cellular energy balance. We look at how AMPK integrates stress responses such as exercise as well as nutrient and hormonal signals to control food intake, energy expenditure, and substrate utilization at the whole body level. Lastly, we review the possible role of AMPK in multiple common diseases and the role of the new age of drugs targeting AMPK signaling.
Although interleukin-6 (IL-6) has been associated with insulin resistance, little is known regarding the effects of IL-6 on insulin sensitivity in humans in vivo. Here, we show that IL-6 infusion increases glucose disposal without affecting the complete suppression of endogenous glucose production during a hyperinsulinemic-euglycemic clamp in healthy humans. Because skeletal muscle accounts for most of the insulin-stimulated glucose disposal in vivo, we examined the mechanism(s) by which IL-6 may affect muscle metabolism using L6 myotubes. IL-6 treatment increased fatty acid oxidation, basal and insulin-stimulated glucose uptake, and translocation of GLUT4 to the plasma membrane. Furthermore, IL-6 rapidly and markedly increased AMP-activated protein kinase (AMPK). To determine whether the activation of AMPK mediated cellular metabolic events, we conducted experiments using L6 myotubes infected with dominant-negative AMPK ␣-subunit. The effects described above were abrogated in AMPK dominant-negative-infected cells. Our results demonstrate that acute IL-6 treatment enhances insulin-stimulated glucose disposal in humans in vivo, while the effects of IL-6 on glucose and fatty acid metabolism in vitro appear to be mediated by AMPK. Diabetes
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.