Environmental and resource limitations provide increased motivation for design of net-zero energy or net-zero CO2 buildings. The optimum building design will have the lowest lifecycle cost. This paper describes a method of performing and comparing lifecycle costs for standard, CO2-neutral and net-zero energy buildings. Costs of source energy are calculated based on the cost of photovoltaic systems, tradable renewable certificates, CO2 credits and conventional energy. Building energy simulation is used to determine building energy use. A case study is conducted on a proposed net-zero energy house. The paper identifies the least-cost net-zero energy house, the least-cost CO2 neutral house, and the overall least-cost house. The methodology can be generalized to different climates and buildings. The method and results may be of interest to builders, developers, city planners, or organizations managing multiple buildings.
This paper describes a four-step method to analyze the utility bills and weather data from multiple residences to target buildings for specific energy conservation retrofits. The method is also useful for focusing energy assessments on the most promising opportunities. The first step of the method is to create a three-parameter changepoint regression model of energy use versus weather for each building and fuel type. The three model parameters represent weather independent energy use, the building heating or cooling coefficient and the building balance-point temperature. The second step is to drive the models using typical TMY2 weather data to determine Normalized Annual Consumption (NAC) for each fuel type. The third step is to create a sliding NAC with each set of 12 sequential months of utility data. The final step is to benchmark the NACs and coefficients of multiple buildings to identify average, best and worst energy performers, and how the performance of each building has changed over time. The method identifies billing errors, normalizes energy use for changing weather, prioritizes sites for specific energy-efficiency retrofits and tracks weather-normalized changes in energy use. The principle differences between this method and previously defined ones are that this method seeks to use inverse modeling proactively to identify energy saving opportunities rather than retroactively to measure energy savings, it tracks changes in building performance using sliding analysis, and it uses comparisons between multiple buildings to extract additional information. This paper describes the method, then demonstrates the method through a case study of about 300 low-income residences. After applying the method, targeted buildings were visited to determine the accuracy of the method at identifying energy efficiency opportunities. The case study shows that over 80% of the targeted buildings presented at least one of the expected problems from each type of retrofit.
In response to both global and local challenges, the University of Dayton is committed to building a net-zero energy student residence, called the Eco-house. A unique aspect of the Eco-house is the degree of student involvement; in accordance with UD’s mission, interdisciplinary student teams from mechanical engineering, civil engineering and the humanities are leading the design effort. This paper discusses the conceptual design of a net-zero energy use campus residence, and the analysis completed thus far. Energy use of current student houses is analyzed to provide a baseline and to identify energy saving opportunities. The use of the whole-system inside-out approach to guide the overall design is described. Using the inside-out method as a guide, the energy impacts of occupant behavior, appliances and lights, building envelope, energy distribution systems and primary energy conversion equipment are discussed. The design of solar thermal and solar photovoltaic systems to meet the hot water and electricity requirements of the house is described. Eco-house energy use is simulated and compared to the energy use of the existing houses. The analysis shows the total source energy requirements of the Eco-house could be reduced by about 340 mmBtu per year over older baseline houses, resulting in CO2 emission reductions of about 54,000 lb per year and utility cost savings of about $3,000 per year. Detailed cost analysis and cost optimization have not been performed but are critical aspects of the UD Eco-house project, which will be performed in the future.
In response to both global and local challenges, the University of Dayton is committed to building a net-zero energy student residence, called the Eco-house. A unique aspect of the Ecohouse is its cost effectiveness. This paper discusses both the design and cost-benefit analysis of a net-zero energy campus residence. Energy use of current student houses is presented to provide a baseline for determining energy savings. The use of the whole-system inside-out approach to guide the overall design is described. Using the inside-out method, the energy impacts of occupant behavior, appliances and lights, building envelope, energy distribution systems and primary energy conversion equipment are discussed. The designs of solar thermal and solar photovoltaic systems to meet the hot water and electricity requirements of the house are described. Ecohouse energy use is compared to the energy use of the existing houses. Cost-benefit analysis is first performed on house components and then on the whole house. At a 5% discount rate, 5% borrowing rate for a 20 year mortgage, a 35 year lifetime, and an annual fuel escalation rate of 4%, the Ecohouse can be constructed for no additional lifetime cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.