Natural hormones and some synthetic chemicals spread into our surrounding environment share the capacity to interact with hormone action and metabolism. Exposure to such compounds can cause a variety of developmental and reproductive detrimental abnormalities in wildlife species and, potentially, in human. Many experimental and epidemiological data have reported that exposure of the developing fetus or neonate to environmentally relevant concentrations of some among these endocrine disrupters induces morphological, biochemical and/or physiological disorders in brain and reproductive organs, by interfering with the hormone actions. The impact of such exposures on the hypothalamic-pituitary-gonadal axis and subsequent sexual maturation is the subject of the present review. We will highlight epidemiological human studies and the effects of early exposure during gestational, perinatal or postnatal life in female rodents.
An increase in the frequency of pulsatile gonadotropin-releasing hormone (GnRH) secretion in vitro and a reduction in LH response to GnRH in vivo characterize hypothalamic-pituitary maturation before puberty in the female rat. In girls migrating for international adoption, sexual precocity is frequent and could implicate former exposure to the insecticide dichlorodiphenyltrichloroethane (DDT), since a long-lasting DDT derivative has been detected in the serum of such children. We aimed at studying the effects of early transient exposure to estradiol (E(2)) or DDT in vitro and in vivo in the infantile female rat. Using a static incubation system of hypothalamic explants from 15-day-old female rats, a concentration- and time-dependent reduction in GnRH interpulse interval (IPI) was seen during incubation with E(2) and DDT isomers. These effects were prevented by antagonists of alpha-amino-3-hydroxy-5-methylisoxazole-4 propionic acid (AMPA)/kainate receptors and estrogen receptor. Also, o,p'-DDT effects were prevented by an antagonist of the aryl hydrocarbon orphan dioxin receptor (AHR). After subcutaneous injections of E(2) or o,p'-DDT between Postnatal Days (PNDs) 6 and 10, a decreased GnRH IPI was observed on PND 15 as an ex vivo effect. After DDT administration, serum LH levels in response to GnRH were not different from controls on PND 15, whereas they tended to be lower on PND 22. Subsequently, early vaginal opening (VO) and first estrus were observed together with a premature age-related decrease in LH response to GnRH. After prolonged exposure to E(2) between PNDs 6 and 40, VO occurred at an earlier age, but first estrus was delayed. We conclude that a transient exposure to E(2) or o,p'-DDT in early postnatal life is followed by early maturation of pulsatile GnRH secretion and, subsequently, early developmental reduction of LH response to GnRH that are possible mechanisms of the subsequent sexual precocity. The early maturation of pulsatile GnRH secretion could involve effects mediated through estrogen receptor and/or AHR as well as AMPA/kainate subtype of glutamate receptors.
Our aim was to study the effect of estradiol (E2) on pulsatile GnRH secretion in vitro in relation to sex and development. When hypothalamic explants obtained from 5- and 15-d-old female rats were exposed to E2 (10(-7) m), a reduction of GnRH interpulse interval (IPI) occurred but not at 25 and 50 d of age. This effect was prevented by the estrogen receptor antagonist ICI 182.780 and the AMPA/kainate receptor antagonist DNQX but not by the AMPA and N-methyl-d-aspartate receptor antagonists SYM 2206 and MK-801. E2 did not affect GnRH IPI in hypothalamic explants obtained from male rats. Therefore, the possible relation between the female-specific effects of E2 in vitro and perinatal sexual differentiation was investigated. When using explants obtained from female rats masculinized through testosterone injection on postnatal d 1, E2 was no longer effective in vitro at 5 and 15 d. In addition, with explants obtained from male rats demasculinized through perinatal aromatase inhibitor treatment, E2 became capable of decreasing GnRH IPI in vitro at 15 d. To study the possible pathophysiological significance of early hypothalamic E2 effects, female rats received a single E2 injection on postnatal d 10. This resulted in reduced GnRH IPI in vitro on d 15 as well as advancement in age at vaginal opening and first estrus. In conclusion, E2 decreases the GnRH IPI in the immature female hypothalamus in vitro through a mechanism that depends on perinatal brain sexual differentiation and that could be involved in some forms of female precocious puberty.
It has been earlier proposed that oxytocin could play a facilitatory role in the preovulatory LH surge in both rats and humans. We here provide evidence that oxytocin also facilitates sexual maturation in female rats. The administration of an oxytocin antagonist for 6 d to immature female rats decreased GnRH pulse frequency ex vivo and delayed the age at vaginal opening and first estrus. The in vitro reduction in GnRH pulse frequency required chronic blockade of oxytocin receptors, because it was not acutely observed after a single injection of the antagonist. Hypothalamic explants exposed to the antagonist in vitro showed a reduced GnRH pulse frequency and failed to respond to oxytocin with GnRH release. Prostaglandin E(2) (PGE(2)) mimicked the stimulatory effect of oxytocin on GnRH pulse frequency, and inhibition of PG synthesis blocked the effect of oxytocin, suggesting that oxytocin accelerates pulsatile GnRH release via PGE(2). The source of PGE(2) appears to be astrocytes, because oxytocin stimulates PGE(2) release from cultured hypothalamic astrocytes. Moreover, astrocytes express oxytocin receptors, whereas GnRH neurons do not. These results suggest that oxytocin facilitates female sexual development and that this effect is mediated by a mechanism involving glial production of PGE(2).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.