This study assessed how digestate and the liquid fraction (LF) of digestate would perform as candidate RENURE fertilisers (recovered nitrogen from manure) in nitrate vulnerable zones under the proposed criteria of the Joint Research Centre, namely, (i) a mineral nitrogen to total nitrogen ratio ≥ 90% (Nmin:TN ≥ 90%) or a total organic carbon to TN ratio ≤ 3 (TOC:TN ≤ 3); (ii) limits of ≤300 copper (Cu) mg kg−1 and ≤800 Zinc (Zn) mg kg−1. These criteria were applied to unpublished data (n = 2622) on digestate compositional properties, further amended with data from the literature (n = 180); digestate analysis from seven full-scale biogas facilities (n = 14); and biogas industry stakeholders (n = 23). The results showed that Cu and Zn mostly met the criteria, with compliance rates of 94.7% (of 1035 entries) and 95.0% (of 1038 entries), respectively. Just above 5% (of 1856 entries) met the Nmin/TN ≥ 90% criterion, while 36% (of 1583 entries) met the TOC/TN ≤ 3 criterion, while total compliance was 32% (of 1893 entries). When targeting the LF, total compliance increased noticeably, between 43 and 58% depending on DM range, indicating that LFs are better suited RENURE candidate fertilisers than unseparated digestate.
The carbon (C) and nitrogen (N) mineralisation rates of five digestates were studied and compared with pig slurry, compost, and a solid fraction of digestate in aerobic incubation experiments. The objective was to identify the most relevant drivers of C and N mineralisation based on the physicochemical properties of the products. Net organic nitrogen mineralisation of digestates (Nmin, net) was on average 30%, although the range was relatively wide, with digestate from pig manure (39%) reaching double the value of digestate from sewage sludge (21%). The total carbon to total nitrogen (TC:TN) (r = −0.83, p < 0.05) and ammonium nitrogen to total nitrogen (NH4+-N:TN) (r = 0.83, p < 0.05) ratios of the products were strongly correlated with Nmin, net, adequately mirroring the expected fertilising potential of the products. The digestates had C sequestration values between 50 and 81% of applied total organic carbon (TOC), showcasing their potential to contribute to C build-up in agricultural soils. The carbon use efficiency of the amended soils was negatively correlated with dissolved organic carbon (DOC) (r = −0.75, p < 0.05) suggesting that catabolic activities were promoted proportionately to the DOC present in these products. Ratios of DOC:TOC (r = −0.88, p < 0.01) and TC:TN (r = 0.92, p < 0.01) were reliable predictors of the fraction of C that would remain one year after its incorporation and thus could be used as simple quality parameters to denote the C sequestration potential of digestates prior to their use in the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.