Aspergillus fumigatus is a common mould whose spores are a
component of the normal airborne flora. Immune dysfunction permits developmental
growth of inhaled spores in the human lung causing aspergillosis, a significant
threat to human health in the form of allergic, and life-threatening invasive
infections. The success of A. fumigatus as a pathogen is unique
among close phylogenetic relatives and is poorly characterised at the molecular
level. Recent genome sequencing of several Aspergillus species
provides an exceptional opportunity to analyse fungal virulence attributes
within a genomic and evolutionary context. To identify genes preferentially
expressed during adaptation to the mammalian host niche, we generated multiple
gene expression profiles from minute samplings of A. fumigatus
germlings during initiation of murine infection. They reveal a highly
co-ordinated A. fumigatus gene expression programme, governing
metabolic and physiological adaptation, which allows the organism to prosper
within the mammalian niche. As functions of phylogenetic conservation and
genetic locus, 28% and 30%, respectively, of the
A. fumigatus subtelomeric and lineage-specific gene
repertoires are induced relative to laboratory culture, and physically clustered
genes including loci directing pseurotin, gliotoxin and siderophore biosyntheses
are a prominent feature. Locationally biased A. fumigatus gene
expression is not prompted by in vitro iron limitation, acid,
alkaline, anaerobic or oxidative stress. However, subtelomeric gene expression
is favoured following ex vivo neutrophil exposure and in
comparative analyses of richly and poorly nourished laboratory cultured
germlings. We found remarkable concordance between the A.
fumigatus host-adaptation transcriptome and those resulting from
in vitro iron depletion, alkaline shift, nitrogen
starvation and loss of the methyltransferase LaeA. This first transcriptional
snapshot of a fungal genome during initiation of mammalian infection provides
the global perspective required to direct much-needed diagnostic and therapeutic
strategies and reveals genome organisation and subtelomeric diversity as
potential driving forces in the evolution of pathogenicity in the genus
Aspergillus.
Abstract. The temperature-sensitive cell cycle mutation nimA5 causes nuclei of Aspergillus nidulans to be blocked in late G2 at restrictive temperature. Under these conditions the spindle pole body divides but does not separate and the mitotic index drops to zero.
Mycobacterium leprae causes leprosy. M leprae strains collected worldwide have been genetically clonal, which poorly explains the varying severity and clinical features of the disease. We discovered a new Mycobacterium species from 2 patients who died of diffuse lepromatous leprosy (DLL). The Mycobacterium was purified from heavily infected, freshly frozen autopsy liver tissue followed by DNA extraction in 1 case. Paraffin-embedded skin tissue was used for DNA extraction in another case. Six genes of the organism were amplified by polymerase chain reaction, sequenced on cloning or from amplicons, and analyzed. Significant genetic differences with M leprae were found, including a 2.1% divergence of the 16S ribosomal RNA (rRNA) gene, a highly conserved marker of bacterial evolution, and 6% to 14% mismatches among 5 less conserved genes. Phylogenetic analyses of the genes of 16S rRNA, rpoB, and hsp65 indicated that the 2 most related organisms evolved from a common ancestor that had branched from other mycobacteria. These results and the unique clinicopathologic features of DLL led us to propose Mycobacterium lepromatosis sp nov. This species may account for some of the clinical and geographic variability of leprosy. This finding may have implications for the research and diagnosis of leprosy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.