SUMMARY Lung disease is a major cause of death in the USA, with current therapeutic approaches only serving to manage symptoms. The most common chronic and life-threatening genetic disease of the lung is Cystic fibrosis (CF) caused by mutations in the cystic fibrosis transmembrane regulator (CFTR). We have generated induced pluripotent stem cells (iPSC) from CF patients carrying a homozygous deletion of F508 in the CFTR gene, which results in defective processing of CFTR to the cell membrane. This mutation was precisely corrected using CRISPR to target corrective sequences to the endogenous CFTR genomic locus, in combination with a completely excisable selection system which significantly improved the efficiency of this correction. The corrected iPSC were subsequently differentiated to mature airway epithelial cells where recovery of normal CFTR expression and function was demonstrated. This isogenic iPSC-based model system for CF could be adapted for the development of new therapeutic approaches.
Dysregulated translation of mRNA plays a major role in tumorigenesis. Mitogen-activated protein kinase interacting kinases (MNK)1/2 are key regulators of mRNA translation integrating signals from oncogenic and immune signaling pathways through phosphorylation of eIF4E and other mRNA binding proteins. Modulation of these key effector proteins regulates mRNA, which controls tumor/stromal cell signaling. Compound 23 (eFT508), an exquisitely selective, potent dual MNK1/2 inhibitor, was designed to assess the potential for control of oncogene signaling at the level of mRNA translation. The crystal structure-guided design leverages stereoelectronic interactions unique to MNK culminating in a novel pyridone-aminal structure described for the first time in the kinase literature. Compound 23 has potent in vivo antitumor activity in models of diffuse large cell B-cell lymphoma and solid tumors, suggesting that controlling dysregulated translation has real therapeutic potential. Compound 23 is currently being evaluated in Phase 2 clinical trials in solid tumors and lymphoma. Compound 23 is the first highly selective dual MNK inhibitor targeting dysregulated translation being assessed clinically.
Dysregulated translation of messenger RNA (mRNA) plays a role in the pathogenesis of multiple solid tumors and hematological malignancies. MNK1 and MNK2 integrate signals from several oncogenic and immune signaling pathways, including RAS, p38, and Toll-like receptor (TLR) pathways, by phosphorylating eukaryotic initiation factor 4E (eIF4E) and other key effector proteins including hnRNPA1 and PSF. Through phosphorylation of these regulatory proteins MNK1 and MNK2 selectively regulate the stability and translation of a subset of cellular mRNA. eFT508 is a potent, highly selective, and orally bioavailable MNK1 and MNK2 inhibitor. eFT508 has a half-maximal inhibitory concentration (IC50) of 1-2 nM against both MNK isoforms in enzyme assays and inhibits the kinase through a reversible, ATP-competitive mechanism of action. Treatment of tumor cell lines with eFT508 led to a dose-dependent reduction in eIF4E phosphorylation at serine 209 (IC50 = 2-16 nM), consistent with previous findings that phosphorylation of this site is solely dependent upon MNK1/MNK2. In a panel of ~50 hematological cancers, eFT508 showed anti-proliferative activity against multiple DLBCL cell lines. Sensitivity to eFT508 in TMD8, OCI-Ly3 and HBL1 DLBCL cell lines was associated with dose-dependent decreases in production of pro-inflammatory cytokines including TNFα, IL-6, IL-10 and CXCL10. Further evaluation eFT508 mechanism of action demonstrated that decreased TNFα production correlated with a 2-fold decrease in TNFα mRNA half-life. These findings are consistent with MNK1 phosphorylation of specific RNA-binding proteins, eg, hnRNPA1, that regulate the stability and translation of mRNA containing specific AU-rich elements (ARE) in their 3'-untranslated regions (UTR). Pro-inflammatory cytokines are drivers of key hallmarks of cancer including tumor cell survival, migration and invasion, angiogenesis, and immune evasion, while also driving drug resistance. Therefore, eFT508 was tested in vivo in 7 subcutaneous human lymphoma xenograft models. Significant anti-tumor activity was observed in the TMD8 and HBL-1 ABC-DLBCL models, both of which harbor activating MyD88 mutations. In addition, eFT508 combined effectively with components of R-CHOP and with novel targeted agents, including ibrutinib and venetoclax, in human lymphoma models. These results underscore the potential of eFT508 for the treatment of DLBCL. eFT508 has also been characterized in nonclinical safety pharmacology and toxicology studies. Clinical trials in patients with hematological and other malignancies are planned. Disclosures Webster: Effector Therapeutics: Employment. Goel:Effector Therapeutics: Employment. Hung:Effector Therapeutics: Employment. Parker:Effector Therapeutics: Employment. Staunton:Effector Therapeutics: Employment. Neal:Effector Therapeutics: Employment. Molter:Effector Therapeutics: Employment. Chiang:Effector Therapeutics: Employment. Jessen:Effector Therapeutics: Equity Ownership. Wegerski:Effector Therapeutics: Employment. Sperry:Effector Therapeutics: Employment. Huang:Effector Therapeutics: Employment. Chen:Effector Therapeutics: Employment. Thompson:Effector Therapeutics: Employment. Appleman:Effector Therapeutics: Employment. Webber:Effector Therapeutics: Equity Ownership. Sprengeler:Effector Therapeutics: Employment. Reich:Effector Therapeutics: Employment.
Mutations or amplifications affecting receptor tyrosine kinases (RTKs) activate the RAS/MAPK and PI3K/AKT signaling pathways thereby promoting cancer cell proliferation and survival. Oncoprotein expression is tightly controlled at the level of mRNA translation and is regulated by the eukaryotic translation initiation factor 4F (eIF4F) complex consisting of eIF4A, eIF4E, and eIF4G. eIF4A functions to catalyze the unwinding of secondary structure in the 5'-untranslated region (5'-UTR) of mRNA facilitating ribosome scanning and translation initiation. The activation of oncogenic signaling pathways, including RAS and PI3K, facilitate formation of eIF4F and enhance eIF4A activity promoting the translation of oncogenes with highly structured 5'-UTRs that are required for tumor cell proliferation, survival and metastasis. eFT226 is a selective eIF4A inhibitor that converts eIF4A into a sequence specific translational repressor by increasing the affinity between eIF4A and 5'-UTR polypurine motifs leading to selective downregulation of mRNA translation. The polypurine element is highly enriched in the 5'-UTR of eFT226 target genes, many of which are known oncogenic drivers, including FGFR1,2 and HER2, enabling eFT226 to selectively inhibit dysregulated oncogene expression. Formation of a ternary complex [eIF4A-eFT226-mRNA] blocks ribosome scanning along the 5'-UTR leading to dose dependent inhibition of RTK protein expression. The 5'-UTR sequence dependency of eFT226 translational inhibition was evaluated in cell-based reporter assays demonstrating 10-45-fold greater sensitivity for reporter constructs containing an RTK 5'-UTR compared to a control. In solid tumor cell lines driven by alterations in FGFR1, FGFR2 or HER2, downregulation of RTK expression by eFT226 resulted in decreased MAPK and AKT signaling, potent inhibition of cell proliferation and an induction of apoptosis suggesting that eFT226 could be effective in treating tumor types dependent on these oncogenic drivers. Solid tumor xenograft models harboring FGFR1,2 or HER2 amplifications treated with eFT226 resulted in significant in vivo tumor growth inhibition and regression at well tolerated doses in breast, non-small cell lung and colorectal cancer models. Treatment with eFT226 also decreased RTK protein levels supporting the potential to use these eFT226 target genes as pharmacodynamic markers of target engagement. Further evaluation of predictive markers of sensitivity or resistance showed that RTK tumor models with mTOR mediated activation of eIF4A are most sensitive to eFT226. The association of eFT226 activity in RTK tumor models with mTOR pathway activation provides a means to further enrich for sensitive patient subsets during clinical development. Clinical trials with eFT226 in patients with solid tumor malignancies have initiated. Citation Format: Peggy A. Thompson, Nathan P. Young, Adina Gerson-Gurwitz, Boreth Eam, Vikas Goel, Craig R. Stumpf, Joan Chen, Gregory S. Parker, Sarah Fish, Maria Barrera, Eric Sung, Jocelyn Staunton, Gary G. Chiang, Kevin R. Webster. Preclinical evaluation of eFT226, a potent and selective eIF4A inhibitor with anti-tumor activity in FGFR1,2 and HER2 driven cancers [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 3399.
Mitogen-activated protein (MAP) kinase signaling cascades play a vital role in T-cell activation upon antigen recognition. MNK1 and MNK2 are important downstream effector kinases in the MAPK pathway that largely function in regulating the expression of important signaling molecules, including cytokines and immune checkpoint receptors. MNKs are primarily thought to regulate the expression of select mRNAs, predominantly via post-transcriptional mechanisms involving the phosphorylation of the eukaryotic translation initiation factor eIF4E as well as the RNA binding proteins hnRNPA1 and PSF. eFT508 is a potent and highly selective inhibitor of MNK1 and MNK2 that has been shown to promote antitumor immunity by decreasing the expression of immunosuppressive molecules, such as immune checkpoint receptors. In order to identify key T-cell components that are regulated by MNK phosphorylation and may mediate the effects of eFT508 treatment, we performed an unbiased phosphoproteomic analysis of T cells during the early stages of T-cell receptor-mediated stimulation with and without eFT508 treatment. Primary human T cells were pretreated with eFT508 for two hours prior to stimulation with αCD3/αCD28 for an additional 30 minutes. Protein samples were then prepared for multiplexed phosphoproteomic analysis by mass spectrometry. Consistent with previous proteomic studies using stimulated T cells, a number of phosphopeptides associated with T-cell receptor signaling, among other cellular activities, were detected. Moreover, treatment with eFT508 specifically blocked the phosphorylation of distinct phosphosites on select proteins. The phosphoproteins modulated by eFT508 treatment are involved in important T-cell signaling pathways, cell proliferation and differentiation programs, stress responses, and post-transcriptional and translational gene regulation. Furthermore, there was enrichment for specific sequences surrounding the phosphorylation site in eFT508-sensitive peptides, highlighting a potential mechanism mediating MNK target recognition. Confirmation of MNK-mediated phosphorylation of novel substrates is being conducted in vitro by biochemical analysis of direct phosphorylation of potential substrates by MNK1 or MNK2 and in cellular lysates treated with eFT508 by Western blot analysis using phosphosite-specific antibodies. These findings have significantly expanded our understanding of cell signaling through MNK1 and MNK2 and will help to illuminate potential regulatory programs through which inhibition of MNKs by eFT508 can modulate antitumor immunity. Citation Format: Craig R. Stumpf, Joan Chen, Vikas K. Goel, Gregory S. Parker, Gary G. Chiang, Peggy A. Thompson, Kevin R. Webster. Inhibition of MNK by eFT508 reprograms T-cell signaling to promote an antitumor immune response [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 3855.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.