In this paper, we propose quantum circuits for runtime assertions, which can be used for both software debugging and error detection. Runtime assertion is challenging in quantum computing for two key reasons. First, a quantum bit (qubit) cannot be copied, which is known as the non-cloning theorem. Second, when a qubit is measured, its superposition state collapses into a classical state, losing the inherent parallel information. In this paper, we overcome these challenges with runtime computation through ancilla qubits, which are used to indirectly collect the information of the qubits of interest. We design quantum circuits to assert classical states, entanglement, and superposition states.
High-speed networking technology and standards have progressed dramatically in the past few years and much attention is now focused on deployment efforts, such as the North Carolina Information Highway (NCIH) [7], and applications. With this shift in emphasis, concerns have been raised about information security. Examples of abuse of the Internet abound and unfortunately ATM networks are subject to many of these same abuses. This is of subtanstial concern when thinking about extending the reach of public data networking to broad segments of society.
Often, in their unending quest for computers with higher performance, architects seek to reduce or hide latency-the number of cycles an operation takes from start to finish. Multithreaded architectures take the tack of hiding latency by supporting multiple concurrent streams of threads, which are independent of one another. This article gives an introduction to multithread processor architectures and discussions for the design challenges
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.