We describe a novel mechanism regulating the tumor endothelial barrier and T cell homing to tumors. Selective expression of the death mediator Fas ligand (FasL/CD95L) was detected in the vasculature of many human and mouse solid tumors but not in normal vasculature, and in these tumors it was associated with scarce CD8+ infiltration and predominance of FoxP3+ T regulatory (Treg) cells. Tumor-derived vascular endothelial growth factor A (VEGF-A), interleukin 10 (IL-10) and prostaglandin E2 (PGE2) cooperatively induced FasL expression on endothelial cells, which acquired the ability to kill effector CD8+ T cells, but not Treg cells, due to higher levels of cFLIP expression in Tregs. In the mouse, genetic or pharmacologic suppression of FasL produced a significant increase in the influx of tumor-rejecting CD8+ over FoxP3+ T cells. Pharmacologic inhibition of VEGF and PGE2 attenuated tumor endothelial FasL expression, produced a significant increase in the influx of tumor-rejecting CD8+ over FoxP3+ T cells, which was FasL-dependent, and led to CD8-dependent tumor growth suppression. Thus, tumor paracrine mechanisms establish a tumor endothelial death barrier, which plays a critical role in establishing immune tolerance and determining the fate of tumors.
Regulatory T cells (Tregs) are found infiltrating tumors in a vast array of tumor types, and tumor-infiltrating Tregs are often associated with a poor clinical outcome. Tregs are potent immunosuppressive cells of the immune system that promote progression of cancer through their ability to limit antitumor immunity and promote angiogenesis. Here, we discuss the ways in which Tregs suppress the antitumor immune response, and elaborate on our recent discovery that Tregs make significant direct contributions to tumor angiogenesis. Further, we highlight several current therapies aimed at the elimination of Tregs within cancer patients. Given the multifaceted role of Tregs in cancer, a greater understanding of their functions will ultimately strengthen future therapies.
Emerging evidence indicates that angiogenesis and immunosuppression frequently occur simultaneously in response to diverse stimuli. Here, we describe a fundamental biological programme that involves the activation of both angiogenesis and immunosuppressive responses, often through the same cell types or soluble factors. We suggest that the initiation of these responses is part of a physiological and homeostatic tissue repair programme, which can be co-opted in pathological states, notably by tumours. This view can help to devise new cancer therapies and may have implications for aseptic tissue injury, pathogen-mediated tissue destruction, chronic inflammation and even reproduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.