High-spin oxoiron(IV) species are often implicated in the mechanisms of nonheme iron oxygenases, their C-H bond cleaving properties being attributed to the quintet spin state. However, the few available synthetic S = 2 Fe(IV)═O complexes supported by polydentate ligands do not cleave strong C-H bonds. Herein we report the characterization of a highly reactive S = 2 complex, [Fe(IV)(O)(TQA)(NCMe)](2+) (2) (TQA = tris(2-quinolylmethyl)amine), which oxidizes both C-H and C═C bonds at -40 °C. The oxidation of cyclohexane by 2 occurs at a rate comparable to that of the oxidation of taurine by the TauD-J enzyme intermediate after adjustment for the different temperatures of measurement. Moreover, compared with other S = 2 complexes characterized to date, the spectroscopic properties of 2 most closely resemble those of TauD-J. Together these features make 2 the best electronic and functional model for TauD-J to date.
Kα High-Energy Resolution Fluorescence Detected X-ray Absorption Spectroscopy (HERFD XAS) provides a powerful tool for overcoming the limitations of conventional XAS to identify the electronic structure and coordination environment of metalloprotein active sites. Herein, Fe Kα HERFD-XAS is applied to the diiron active site of soluble Methane Monooxygenase (sMMO) and to a series of high-valent diiron model complexes, including a “diamond core” [FeIV2(μ-O)2(L)2](ClO4)4] (3) and an “open core” [(O=FeIV–O–FeIV(OH)(L)2](ClO4)3 (4) (where, L = tris(3,5-dimethyl-4-methoxypyridyl-2-methyl)amine) (TPA*)). Pronounced differences in the HERFD XAS pre-edge energies and intensities are observed for the open vs. closed Fe2O2 cores in the model compounds. These differences are reproduced by time-dependent density functional theory (TDDFT) calculations and allow for the pre-edge energies and intensity to be directly correlated with the local active site geometric and electronic structure. A comparison of the model complex HERFD XAS data to that of MMOHQ (the key intermediate in methane oxidation) is supportive of an open core structure. Specifically, the large pre-edge area observed for MMOHQ may be rationalized by invoking an open core structure with a terminal FeIV=O motif, though further modulations of the core structure due to the protein environment cannot be ruled out. The present study, thus, motivates the need for additional experimental and theoretical studies to unambiguously assess the active site conformation of MMOHQ.
The trigonal bipyramidal high-spin (S = 2) oxoiron(IV) complex [FeIV(O)(TMG2dien)(CH3CN)]2+ (7) was synthesized and spectroscopically characterized. Substitution of the CH3CN ligand by anions, demonstrated here for X = N3− and Cl−, yielded further S = 2 oxoiron(IV) complexes of general formulation [FeIV(O)(TMG2dien)(X)]+ (7-X). The reduced steric bulk of 7 relative to the published S = 2 complex [FeIV(O)(TMG3tren)]2+ (2) was reflected by enhanced rates of intermolecular substrate oxidation.
The apparent Sc3+ adduct of [FeIV(O)-(TMC)]2+ (1, TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) has been synthesized in amounts sufficient to allow its characterization by various spectroscopic techniques. Contrary to the earlier assignment of a +4 oxidation state for the iron center of 1, we establish that 1 has a high-spin iron(III) center based on its Mössbauer and EPR spectra and its quantitative reduction by 1 equiv of ferrocene to [FeII(TMC)]2+. Thus, 1 is best described as a ScIII–O–FeIII complex, in agreement with previous DFT calculations (Swart, M. Chem. Commun. 2013, 49, 6650.). These results shed light on the interaction of Lewis acids with high-valent metal-oxo species.
Redox properties of H(2)TFcP [TFcP(2-) = 5,10,15,20-tetraferrocenylporphyrin(2-)] were investigated using cyclic voltammetry, differential pulse voltammetry, and square-wave voltammetry methods in a large variety of solvents and electrolytes. When DMF, THF, and MeCN were used with TBAP as the supporting electrolyte, the first oxidation wave was assigned to a single four-electron oxidation process reflecting simultaneous oxidation of all iron(II) centers into iron(III) centers in H(2)TFcP. When an o-DCB (1,2-dichlorobenzene)/TBAP combination was used in electrochemical experiments, four ferrocene substituents underwent two very diffuse, "two-electron" stepwise oxidations. The use of a weakly coordinating TFAB ([NBu(4)][B(C(6)F(5))(4)]) electrolyte in o-DCB or DCM results in four single-electron oxidation processes for ferrocene substituents in which the first and second single-electron waves have a relatively large separation, while the second, third, and fourth oxidation processes are more closely spaced; similar results were observed when a DCM/TBAP system and an imidazolium cation-based ionic liquid ((bmim)Tf(2)N = N-butyl-N'-methylimidazolium bis(trifluoromethanesulfonyl)imide) were used. Spectroelectrochemical oxidation of H(2)TFcP in o-DCB or DCM with TFAB as the supporting electrolyte allowed for characterization of the mixed-valence [H(2)TFcP](+), [H(2)TFcP](2+), and [H(2)TFcP](3+) compounds by UV-vis spectroscopy in addition to the "all-Fe(III)" [H(2)TFcP](4+). The chemical oxidation of H(2)TFcP was tested using a variety of oxidants which resulted in formation of mixed-valence [H(2)TFcP](+) and [H(2)TFcP](2+) as well as [H(2)TFcP](4+), which were characterized by UV-vis-NIR, MCD, IR, Mossbauer, and XPS spectroscopy. The intervalence-charge-transfer bands observed in the near-IR region in [H(2)TFcP](+) and [H(2)TFcP](2+) complexes were analyzed using Hush formalism and found to be of class II (in Robin-Day classification) character with localized ferrous and ferric centers. Class II behavior of [H(2)TFcP](+) and [H(2)TFcP](2+) complexes was further confirmed by Mossbauer, IR, and XPS data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.