SUMMARY Temperature-dependent behaviours inCaenorhabditis elegans, such as thermotaxis and isothermal tracking, are complex behavioural responses that integrate sensation, foraging and learning, and have driven investigations to discover many essential genetic and neural pathways. The ease of manipulation of the Caenorhabditis model system also has encouraged its application to comparative analyses of phenotypic evolution, particularly contrasts of the classic model C. elegans with C. briggsae. And yet few studies have investigated natural genetic variation in behaviour in any nematode. Here we measure thermotaxis and isothermal tracking behaviour in genetically distinct strains of C. briggsae, further motivated by the latitudinal differentiation in C. briggsae that is associated with temperature-dependent fitness differences in this species. We demonstrate that C. briggsae performs thermotaxis and isothermal tracking largely similar to that of C. elegans, with a tendency to prefer its rearing temperature. Comparisons of these behaviours among strains reveal substantial heritable natural variation within each species that corresponds to three general patterns of behavioural response. However, intraspecific genetic differences in thermal behaviour often exceed interspecific differences. These patterns of temperature-dependent behaviour motivate further development of C. briggsae as a model system for dissecting the genetic underpinnings of complex behavioural traits. Supplementary material available online at
Background Animal responses to thermal stimuli involve intricate contributions of genetics, neurobiology and physiology, with temperature variation providing a pervasive environmental factor for natural selection. Thermal behavior thus exemplifies a dynamic trait that requires non-trivial phenotypic summaries to appropriately capture the trait in response to a changing environment. To characterize the deterministic and plastic components of thermal responses, we developed a novel micro-droplet assay of nematode behavior that permits information-dense summaries of dynamic behavioral phenotypes as reaction norms in response to increasing temperature (thermal tolerance curves, TTC). Results We found that C. elegans TTCs shift predictably with rearing conditions and developmental stage, with significant differences between distinct wildtype genetic backgrounds. Moreover, after screening TTCs for 58 C. elegans genetic mutant strains, we determined that genes affecting thermosensation, including cmk - 1 and tax - 4 , potentially play important roles in the behavioral control of locomotion at high temperature, implicating neural decision-making in TTC shape rather than just generalized physiological limits. However, expression of the transient receptor potential ion channel TRPA-1 in the nervous system is not sufficient to rescue rearing-dependent plasticity in TTCs conferred by normal expression of this gene, indicating instead a role for intestinal signaling involving TRPA-1 in the adaptive plasticity of thermal performance. Conclusions These results implicate nervous system and non-nervous system contributions to behavior, in addition to basic cellular physiology, as key mediators of evolutionary responses to selection from temperature variation in nature. Electronic supplementary material The online version of this article (10.1186/s12868-019-0510-z) contains supplementary material, which is available to authorized users.
Background: Animal responses to thermal stimuli involve intricate contributions of genetics, neurobiology and physiology, with temperature variation providing a pervasive environmental factor for natural selection. Thermal behavior thus exemplifies a dynamic trait that requires nontrivial phenotypic summaries to appropriately capture the trait in response to a changing environment. To characterize the deterministic and plastic components of thermal responses, we developed a novel micro-droplet assay of nematode behavior that permits information-dense summaries of dynamic behavioral phenotypes as reaction norms in response to increasing temperature (thermal tolerance curves, TTC). Results:We found that C. elegans TTCs shift predictably with rearing conditions and developmental stage, with significant differences between distinct wildtype genetic backgrounds.Moreover, after screening TTCs for 58 C. elegans genetic mutant strains, we determined that genes affecting thermosensation, including cmk-1 and tax-4, potentially play important roles in the behavioral control of locomotion at high temperature, implicating neural decision-making in TTC shape rather than just generalized physiological limits. However, expression of the transient receptor potential ion channel TRPA-1 in the nervous system is not sufficient to rescue rearingdependent plasticity in TTCs conferred by normal expression of this gene, indicating instead a role for intestinal signaling involving TRPA-1 in the adaptive plasticity of thermal performance. Conclusions:These results implicate nervous system and non-nervous system contributions to behavior, in addition to basic cellular physiology, as key mediators of evolutionary responses to selection from temperature variation in nature.
Article SummaryPlastic responses to environmental inputs, reaction norm phenotypes that can be summarized with parameters of fits to a mathematical function, are pervasive across diverse organismal traits and crucial to organismal fitness. We quantified the nematode Caenorhabditis briggsae's behavioral thermal performance curves as function-valued traits for 23 wild isolate genotypes and 153 recombinant inbred lines. We identified quantitative trait loci on multiple chromosomes that define genetically distinct behavioral modules contributing to the emergent overall behavioral thermal performance curve. These findings highlight how dynamic behavioral responses to environmental inputs can evolve through independent changes to genetically distinct modular components of such complex phenotypes.
Associative learning and sensory integration are two behavioral processes that involve the sensation and processing of stimuli followed by an altered behavioral response to these stimuli, with learning requiring memory formation and retrieval. We found that the cellular and molecular actions of scd-2 dissociate sensory integration and associative learning. This was discovered through investigation of a Caenorhabditis elegans mutation ( lrn-2 ( mm99 )) affecting both processes. After mapping and sequencing, lrn-2 was found to be allelic to the gene, scd-2 . scd-2 -mediated associative learning and sensory integration operate in separate neurons as separate processes. We also find that memories can form from associations that are processed and stored independently from the integration of stimuli preceding an immediate behavioral decision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.