Coordinating technology, policy, and business innovations
Over the past decade, the global cumulative installed photovoltaic (PV) capacity has grown exponentially, reaching 591 GW in 2019. Rapid progress was driven in large part by improvements in solar cell and module efficiencies, reduction in manufacturing costs and the realization of levelized costs of electricity that are now generally less than other energy sources and approaching similar costs with storage included. Given this success, it is a particularly fitting time to assess the state of the photovoltaics field and the technology milestones that must be achieved to maximize future impact and forward momentum. This roadmap outlines the critical areas of development in all of the major PV conversion technologies, advances needed to enable terawatt-scale PV installation, and cross-cutting topics on reliability, characterization, and applications. Each perspective provides a status update, summarizes the limiting immediate and long-term technical challenges and highlights breakthroughs that are needed to address them. In total, this roadmap is intended to guide researchers, funding agencies and industry in identifying the areas of development that will have the most impact on PV technology in the upcoming years.
aTo meet climate targets, power generation capacity from photovoltaics (PV) in 2030 will have to be much greater than is predicted from either steady state growth using today's manufacturing capacity or industry roadmaps. Analysis of whether current technology can scale, in an economically sustainable way, to sufficient levels to meet these targets has not yet been undertaken, nor have tools to perform this analysis been presented. Here, we use bottom-up cost modeling to predict cumulative capacity as a function of technological and economic variables. We find that today's technology falls short in two ways: profits are too small relative to upfront factory costs to grow manufacturing capacity rapidly enough to meet climate targets, and costs are too high to generate enough demand to meet climate targets. We show that decreasing the capital intensity (capex) of PV manufacturing to increase manufacturing capacity and effectively reducing cost (e.g., through higher efficiency) to increase demand are the most effective and least risky ways to address these barriers to scale. We also assess the effects of variations in demand due to hard-to-predict factors, like public policy, on the necessary reductions in cost. Finally, we review examples of redundant technology pathways for crystalline silicon PV to achieve the necessary innovations in capex, performance, and price. Broader contextTo reduce CO 2 emissions enough over the next fifteen years and avoid the worst effects of climate change will require dramatic increases in the deployment of renewable energy, photovoltaics (PV) in particular. Climate action plans call for 2-10 terawatts (TW) of PV by 2030. Current manufacturing capacity could supply enough for 1 TW of cumulative installations at the end of this period, implying that growth in manufacturing capacity is necessary. Industry roadmaps project up to 2.6 TW but largely fail to assess whether these targets are economically feasible with today's PV module technology. Addressing the question of what technological innovations, if any, would enable rapid manufacturing scale-up requires a conceptual advance in modeling methodology. We address this challenge by coupling three industry-validated models: a bottom-up cost model, an economically sustainable growth-rate calculator, and a constraining demand curve. This approach enables us to determine the sensitivity of PV industry growth to specific technological and economic variables, considering both their effect on the ratio of up-front factory costs to revenue and demand as a function of PV module price. Shifting the demand curve enables us to consider the effects of different policy decisions, like a carbon tax or deployment subsidies.
To meet climate targets, power generation capacity from photovoltaics (PV) in 2030 will have to be much greater than is predicted from either steady state growth using today's manufacturing capacity or industry roadmaps. Analysis of whether current technology can scale, in an economically sustainable way, to sufficient levels to meet these targets has not yet been undertaken, nor have tools to perform this analysis been presented. Here, we use bottom-up cost modeling to predict cumulative capacity as a function of technological and economic variables. We find that today's technology falls short in two ways: profits are too small relative to upfront factory costs to grow manufacturing capacity rapidly enough to meet climate targets, and costs are too high to generate enough demand to meet climate targets. We show that decreasing the capital intensity (capex) of PV manufacturing to increase manufacturing capacity and effectively reducing cost (e.g., through higher efficiency) to increase demand are the most effective and least risky ways to address these barriers to scale. We also assess the effects of variations in demand due to hard-to-predict factors, like public policy, on the necessary reductions in cost. Finally, we review examples of redundant technology pathways for crystalline silicon PV to achieve the necessary innovations in capex, performance, and price. Broader context To reduce CO 2 emissions enough over the next fifteen years and avoid the worst effects of climate change will require dramatic increases in the deployment of renewable energy, photovoltaics (PV) in particular. Climate action plans call for 2-10 terawatts (TW) of PV by 2030. Current manufacturing capacity could supply enough for 1 TW of cumulative installations at the end of this period, implying that growth in manufacturing capacity is necessary. Industry roadmaps project up to 2.6 TW but largely fail to assess whether these targets are economically feasible with today's PV module technology. Addressing the question of what technological innovations, if any, would enable rapid manufacturing scale-up requires a conceptual advance in modeling methodology. We address this challenge by coupling three industry-validated models: a bottom-up cost model, an economically sustainable growth-rate calculator, and a constraining demand curve. This approach enables us to determine the sensitivity of PV industry growth to specific technological and economic variables, considering both their effect on the ratio of up-front factory costs to revenue and demand as a function of PV module price. Shifting the demand curve enables us to consider the effects of different policy decisions, like a carbon tax or deployment subsidies.
aTo meet climate targets, power generation capacity from photovoltaics (PV) in 2030 will have to be much greater than is predicted from either steady state growth using today's manufacturing capacity or industry roadmaps. Analysis of whether current technology can scale, in an economically sustainable way, to sufficient levels to meet these targets has not yet been undertaken, nor have tools to perform this analysis been presented. Here, we use bottom-up cost modeling to predict cumulative capacity as a function of technological and economic variables. We find that today's technology falls short in two ways: profits are too small relative to upfront factory costs to grow manufacturing capacity rapidly enough to meet climate targets, and costs are too high to generate enough demand to meet climate targets. We show that decreasing the capital intensity (capex) of PV manufacturing to increase manufacturing capacity and effectively reducing cost (e.g., through higher efficiency) to increase demand are the most effective and least risky ways to address these barriers to scale. We also assess the effects of variations in demand due to hard-to-predict factors, like public policy, on the necessary reductions in cost. Finally, we review examples of redundant technology pathways for crystalline silicon PV to achieve the necessary innovations in capex, performance, and price. Broader contextTo reduce CO 2 emissions enough over the next fifteen years and avoid the worst effects of climate change will require dramatic increases in the deployment of renewable energy, photovoltaics (PV) in particular. Climate action plans call for 2-10 terawatts (TW) of PV by 2030. Current manufacturing capacity could supply enough for 1 TW of cumulative installations at the end of this period, implying that growth in manufacturing capacity is necessary. Industry roadmaps project up to 2.6 TW but largely fail to assess whether these targets are economically feasible with today's PV module technology. Addressing the question of what technological innovations, if any, would enable rapid manufacturing scale-up requires a conceptual advance in modeling methodology. We address this challenge by coupling three industry-validated models: a bottom-up cost model, an economically sustainable growth-rate calculator, and a constraining demand curve. This approach enables us to determine the sensitivity of PV industry growth to specific technological and economic variables, considering both their effect on the ratio of up-front factory costs to revenue and demand as a function of PV module price. Shifting the demand curve enables us to consider the effects of different policy decisions, like a carbon tax or deployment subsidies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.