Objective: Extracellular vesicles derived from oral cancer cells, which include Exosomes and Oncosomes, are membranous vesicles secreted into the surrounding extracellular environment. These extracellular vesicles can regulate and modulate oral squamous cell carcinoma (OSCC) progression through the horizontal transfer of bioactive molecules including proteins, lipids and microRNA (miRNA). The primary objective of this study was to examine the potential to isolate and evaluate extracellular vesicles (including exosomes) from various oral cancer cell lines and to explore potential differences in miRNA content. Methods: The OSCC cell lines SCC9, SCC25 and CAL27 were cultured in DMEM containing 10% exosome-free fetal bovine serum. Cell-culture conditioned media was collected for exosome and extracellular vesicle isolation after 72 h. Isolation was completed using the Total Exosome Isolation reagent (Invitrogen) and extracellular vesicle RNA was purified using the Total Exosome RNA isolation kit (Invitrogen). Extracellular vesicle miRNA content was evaluated using primers specific for miR-16, -21, -133a and -155. Results: Extracellular vesicles were successfully isolated from all three OSCC cell lines and total extracellular vesicle RNA was isolated. Molecular screening using primers specific for several miRNA revealed differential baseline expression among the different cell lines. The addition of melatonin significantly reduced the expression of miR-155 in all of the OSCC extracellular vesicles. However, miR-21 was significantly increased in each of the three OSCC isolates. No significant changes in miR-133a expression were observed under melatonin administration. Conclusions: Although many studies have documented changes in gene expression among various cancers under melatonin administration, few studies have evaluated these effects on microRNAs. These results may be among the first to evaluate the effects of melatonin on microRNA expression in oral cancers, which suggests the differential modulation of specific microRNAs, such as miR-21, miR-133a and miR-155, may be of significant importance when evaluating the mechanisms and pathways involved in melatonin-associated anti-tumor effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.