T1rho is better suited for evaluating AF in degenerated disc than T2. In NP, T1rho and T2 decrease in a similar pattern following disc degeneration.
PurposeTo technically investigate the non-Gaussian diffusion of head and neck diffusion weighted imaging (DWI) at 3 Tesla and compare advanced non-Gaussian diffusion models, including diffusion kurtosis imaging (DKI), stretched-exponential model (SEM), intravoxel incoherent motion (IVIM) and statistical model in the patients with nasopharyngeal carcinoma (NPC).Materials and MethodsAfter ethics approval was granted, 16 patients with NPC were examined using DWI performed at 3T employing an extended b-value range from 0 to 1500 s/mm2. DWI signals were fitted to the mono-exponential and non-Gaussian diffusion models on primary tumor, metastatic node, spinal cord and muscle. Non-Gaussian parameter maps were generated and compared to apparent diffusion coefficient (ADC) maps in NPC.ResultsDiffusion in NPC exhibited non-Gaussian behavior at the extended b-value range. Non-Gaussian models achieved significantly better fitting of DWI signal than the mono-exponential model. Non-Gaussian diffusion coefficients were substantially different from mono-exponential ADC both in magnitude and histogram distribution.ConclusionNon-Gaussian diffusivity in head and neck tissues and NPC lesions could be assessed by using non-Gaussian diffusion models. Non-Gaussian DWI analysis may reveal additional tissue properties beyond ADC and holds potentials to be used as a complementary tool for NPC characterization.
The aim of this study was to explore the feasibility and repeatability of amide proton transfer weighted (APTw) MRI for the head and neck on clinical MRI scanners. Six healthy volunteers and four patients with head and neck tumors underwent APTw-MRI scanning at 3T. The APTw signal was quantified by the asymmetric magnetization transfer ratio (MTRasym) at 3.5 ppm. Z-spectra of normal tissues in the head and neck (masseter muscle, parotid glands, submandibular glands and thyroid glands) were analyzed in healthy volunteers. Inter-scan repeatability of APTw-MRI was evaluated in six healthy volunteers. Z-spectra of head and neck tumor patients were produced and APTw signals in these tumors were analyzed. APTw-MRI scanning was successful for all ten subjects. The parotid glands showed the highest APTw signal (~7.6% averagely), while the APTw signals in other tissues were relatively moderate. The repeatability of APTw signals from the masseter muscle, parotid gland, submandibular gland and thyroid gland of healthy volunteers was established. Four head and neck tumors showed positive mean APTw ranging from 1.2% to 3.2%, distinguishable from surrounding normal tissues. APTw-MRI was feasible for the use in the head and neck regions at 3T. The preliminary results on patients with head and neck tumors indicated the potential of APTw-MRI for clinical applications.
Our goal is to study the trade-off between image degradation and improved detection efficiency and resolution from allowing multiplexing in multi-pinhole (MPH) SPECT, and to determine the optimal pinhole number for MPH design. We used an analytical 3D MPH projector and two digitized phantoms: the mouse whole body (MOBY) phantom and a hot sphere phantom to generate noise-free and noisy projections, simulating pinhole collimators fitted with pre-studied pinhole patterns. We performed three schemes to achieve different degrees of multiplexing: 1. Fixed magnification and detection efficiency; 2. Fixed detection efficiency and changed magnification; 3. Fixed magnification and changed detection efficiency. We generated various noisy data sets by simulating Poisson noise using differently scaled noise-free projections and obtained 20 noise realizations for each setting. All datasets were reconstructed using 3D MPH ML-EM reconstruction method. We analyzed the quantitative accuracy by the normalized-mean-square-error. We evaluated the image contrast for the hot sphere phantom simulation, and also the image noise by the average normalized-standard-deviation of certain pixels for different degrees of multiplexing. Generally, no apparent artifacts were observed in the reconstructed images, illustrating the effectiveness of reconstructions. Bias increased for increased degree of multiplexing. Contrast was not significantly affected by multiplexing in the specific simulation scheme (1). Scheme (2) showed that excessive multiplexing to improve image resolution would not improve the overall trade-off of bias and noise compared to no multiplexing. However, scheme (3) showed that when comparing to no multiplexing, the trade-off improved initially with increased multiplexing by allowing more number of pinholes to improve detection efficiency. The trade-off reached a maximum and decreased with further multiplexing due to image degradation from increased bias. The optimal pinhole number was 7 for a compact camera with size of 12 cm × 12 cm and 9 for a standard gamma camera with size of 40 cm × 40 cm in this scheme. We conclude that the gains in improved detection efficiency and resolution by increased multiplexing are offset by increased image degradations. All the aforementioned factors must be considered in the optimum MPH collimator design for small animal SPECT imaging.
Targeted radionuclide therapy (TRT) is a promising technique for cancer therapy. However, in order to deliver the required dose to the tumor, minimize potential toxicity in normal organs, as well as monitor therapeutic effects, it is important to assess the individualized internal dosimetry based on patient-specific data. Advanced imaging techniques, especially radionuclide imaging, can be used to determine the spatial distribution of administered tracers for calculating the organ-absorbed dose. While planar scintigraphy is still the mainstream imaging method, SPECT, PET and bremsstrahlung imaging have promising properties to improve accuracy in quantification. This article reviews the basic principles of TRT and discusses the latest development in radionuclide imaging techniques for different theranostic agents, with emphasis on their potential to improve personalized TRT dosimetry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.