The purpose of this study was to evaluate pitching mechanics between female softball pitchers with upper extremity pain and those without upper extremity pain. Specifically, the trunk, shoulder and elbow kinematics and shoulder kinetics during the change-up softball pitch were examined. Fifty-five collegiate softball pitchers participated, divided into those with upper extremity pain (20.0±1.3 yrs.; 174.4±6.9 cm; 82.9±12.4 kg; 11.1±2.6 yrs. of experience; n=23) and those who were pain-free (19.9±1.4 yrs.; 173.8±6.9 cm; 81.4±12.5 kg; 10.0±2.5 yrs. of experience; n=32). Pitching mechanics were obtained via the trakSTAR electromagnetic tracking system (Ascension Technologies, Inc., Burlington, VT, USA). Mann-Whitney U tests revealed significant differences in shoulder horizontal abduction at foot contact (0.014, 153,2.450) and trunk lateral flexion at ball release (0.012, 150,-2.515); and between shoulder distraction force at ball release (0.034, 168,-2.124). The pain group illustrated greater shoulder horizontal abduction at foot contact, less trunk lateral flexion towards the throwing side at ball release, and greater shoulder distraction at ball release than the pain-free group. The differences in trunk and shoulder kinematics, and shoulder kinetics between groups allows for insight into further studies examining injury pervasiveness in softball pitching.
It was the purpose of our study to examine the kinematics of the pelvis and torso and determine their relationship to the kinematics of the shoulder in high-school baseball pitchers. A single group, repeated-measures design was used to collect pelvis, torso, and shoulder kinematics throughout the pitching motion. Subjects threw a series of maximal effort fastballs to a catcher located the regulation distance (18.44m) from the pitching mound, and those data from the fastest pitch passing through the strike zone were analyzed. After test trials, kinematic data were analyzed using a series of descriptive statistics to identify outliers and determine the nature of the distribution before testing for the presence of relationships between the various parameters. Results indicated that for several parameters, the actions at and about the shoulder are strongly related to the actions of the pelvis and torso throughout the pitching motion. However, although pelvis and torso kinematics throughout the pitching motion were inversely related to both shoulder elevation and the plane of shoulder elevation, only the rate of axial torso rotation was significantly related to these shoulder parameters. More importantly, the rate of axial torso rotation is significantly related to these shoulder parameters in a way that may help explain the high rate of shoulder injury in high-school pitchers. Therefore, strength training should focus on developing a strong stable core including the gluteal musculature in an attempt to control the rate of torso rotation during the pitch.
Background: There is a paucity of research regarding the relationship between fastpitch softball pitching mechanics and reported pain. Thus, understanding the pitching mechanics of athletes pitching with upper extremity pain and those pain free is paramount. Purpose: To examine lower extremity pitching mechanics, upper extremity kinetics, and upper extremity pain in National Collegiate Athletic Association (NCAA) Division I female softball pitchers. Study Design: Descriptive laboratory study. Methods: A total of 37 NCAA Division I female softball pitchers (mean age, 19.84 ± 1.28 years; mean height, 173.67 ± 7.77 cm; mean weight, 78.98 ± 12.40 kg) from across the United States were recruited to participate. Participants were divided into 2 groups: upper extremity pain (n = 13; mean age, 19.69 ± 1.18 years; mean height, 172.60 ± 11.49 cm; mean weight, 86.75 ± 13.02 kg) and pain free (n = 24; mean age, 19.91 ± 1.35 years; mean height, 174.26 ± 4.96 cm; mean weight, 74.78 ± 9.97 kg). An electromagnetic tracking system was used to obtain kinematic and kinetic data during the riseball softball pitch. Results: At foot contact ( F 3,33 = 7.01, P = .001), backward elimination regression revealed that stride length, trunk rotation, and center of mass (COM) significantly explained about 33% of variance with softball pitchers experiencing upper extremity pain (adjusted R 2 = 0.33). Conclusion: At foot contact, the kinematic variables of increased trunk rotation toward the pitching arm side, increased stride length, and a posteriorly shifted COM were associated with upper extremity pain in collegiate softball pitchers. Variables early in the pitching motion that do not set a working and constructive proximal kinetic chain foundation for the rest of the pitch to follow could be associated with breakdowns more distal in the kinetic chain, possibly increasing the susceptibility to upper extremity pain. Clinical Relevance: The identification of pitching mechanics associated with pain allows clinicians to develop exercises to avoid such mechanics. Avoiding mechanics associated with pain may help reduce the prevalence of pain in windmill softball pitchers as well as help coaches incorporate quantitative biomechanics into their instruction.
The purpose of this study was to examine the activation patterns of the gluteal muscle group and their relationship to pelvis and torso kinematics throughout the high-school pitching motion. A single group, repeated-measures design was used to collect gluteus maximus and gluteus medius muscle activity through surface electromyography for the preferred and nonpreferred sides during the various phases of the pitching motion. In addition, data describing the kinematics of the pelvis and torso were collected at foot contact, maximum shoulder external rotation, ball release, and maximum shoulder internal rotation. For all pitchers, preferred gluteus maximus activity was observed to be in excess of 100% of their maximum voluntary isometric contraction throughout the stride and arm-cocking phases of the pitching motion. The observed means for the preferred gluteus medius, nonpreferred gluteus maximus, and nonpreferred gluteus medius, although different in magnitude, were similar in pattern. From the conclusion of the stride phase, through the conclusion of the arm-cocking phase, muscle activity increased for all pitchers. In examining the relationship between the rate of axial pelvis rotation and gluteal activity, several significant relationships were observed. In contrast, no significant relationships were observed with gluteal activity parameters and the rate of axial torso rotation. However, because the pitching motion progresses sequentially from the pelvis to the torso, variability in pelvis rotation may be directly related to variability in torso rotation. The findings from this study indicate that during the baseball pitch, there is a need for greater control of gluteal activation throughout the pitching motion.
This study examined the joint motions and movement patterns of the kinetic chain in the ballistic skill of performing the windmill pitch. Seventeen healthy girls who were currently playing competitive fast-pitch softball volunteered for the study. Subjects were instructed to perform 5 successful fastball windmill style deliveries. We selected 1 pitch for analysis based on the velocity, accuracy, and subjects' input. Kwon3D motion analysis package (Visol., Inc., Seoul, Korea), with 6 digital camcorders placed at 60 degrees apart was used for analysis. Raw data were interpolated using a frequency of 60 Hz and then smoothed using Butterworth low-pass second-order filter with a fixed cut-off frequency of 6 Hz. The subjects were divided into groups based on skill level: novice, intermediate, and advanced. Sequential progression of kinematic variables that resulted in increased throwing velocity and the contribution each segment (upper arm, forearm, and hand) possessed toward ball velocity with descriptive statistics and path analysis were assessed. There was evidence of sequentiality among the arm segments in the intermediate and advanced groups. The patterns of the shared positive contributions made by each of the limb segments were similar among the 3 groups of participants. The novice group tended to rely on more of the upper arm and forearm than the other 2 groups. From this study, it is evident that all emphasis should not be placed on the shoulder, but training and conditioning methods should focus on the entire kinetic chain including the torso and the full arm segment, not just the shoulder in an attempt to gain the greatest velocity while performing the 360 degrees arc of the windmill softball pitch.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.