The intestinal microbiota have critical roles in immune system and metabolic homeostasis, but they must be tolerated by the host to avoid inflammatory responses that can damage the epithelial barrier separating the host from the luminal contents1-6. Breakdown of this regulation and the resulting inappropriate immune response to commensals are thought to lead to the development of inflammatory bowel diseases (IBDs) such as Crohn's disease and ulcerative colitis7. We hypothesized that the intestinal immune system is instructed by the microbiota to limit responses to luminal antigens. We demonstrate that, at steady state, the microbiota inhibit the transport of both commensal and pathogenic bacteria from the lumen to a key immune inductive site, the mesenteric lymph node (MLN). However, in the absence of Myd88 or under conditions of antibiotic-induced dysbiosis, non-invasive bacteria trafficked to the MLN in a CCR7-dependent manner and induced both T cell responses and IgA production. Trafficking was carried out by CX3CR1hi mononuclear phagocytes, an intestinal cell population previously reported to be non-migratory8. These findings define a central role for commensals in regulating the migration to the MLN of CX3CR1hi mononuclear phagocytes endowed with the ability to capture luminal bacteria, thereby compartmentalizing the intestinal immune response to avoid inflammation.
Microbial penetration of the intestinal epithelial barrier triggers inflammatory responses that include induction of the bactericidal C-type lectin RegIIIγ. Systemic administration of flagellin, a bacterial protein that stimulates Toll-like receptor 5 (TLR5), induces epithelial expression of RegIIIγ and protects mice from intestinal colonization with antibiotic-resistant bacteria. Flagellin-induced RegIIIγ expression is IL-22-dependent, but how TLR signaling leads to IL-22 expression is incompletely defined. Using conditional depletion of lamina propria dendritic cell (LPDC) subsets, we demonstrated that CD103+ CD11b+ LPDCs, but not monocyte-derived CD103− CD11b+ LPDCs, expressed high amounts of IL-23 following bacterial flagellin administration and drove IL-22-dependent RegIIIγ production. Maximal expression of IL-23 subunits IL-23p19 and IL-12p40 occurred within 60 minutes of exposure to flagellin. IL-23 subsequently induced a burst of IL-22 followed by sustained RegIIIγ expression. Thus, CD103+ CD11b+ LPDCs, in addition to promoting long-term tolerance to ingested antigens, also rapidly produce IL-23 in response to detection of flagellin in the lamina propria.
Peripheral spondyloarthritis (SpA) is a common extra-intestinal manifestation in patients with active inflammatory bowel disease (IBD) characterized by inflammatory enthesitis, dactylitis, or synovitis of non-axial joints. However, a mechanistic understanding of the link between intestinal inflammation and SpA has yet to emerge. Here, we evaluated and functionally characterized the fecal microbiome of IBD patients with or without peripheral SpA. Coupling the sorting of IgA-coated microbiota with 16S rRNA-based analysis (IgA-seq) revealed a selective enrichment in IgA-coated E. coli in patients with Crohn’s disease-associated SpA (CD-SpA) compared to CD alone. E. coli isolates from CD-SpA-derived IgA-coated bacteria were similar in genotype and phenotype to an Adherent-invasive E. coli (AIEC) pathotype. In comparison to non-AIEC E. coli, colonization of germ-free mice with CD-SpA E. coli isolates induced Th17 mucosal immunity, which required the virulence-associated metabolic enzyme propanediol dehydratase (pduC). Modeling the increase in mucosal and systemic Th17 immunity we observed in CD-SpA patients, colonization of IL-10 deficient or K/BxN mice with CD-SpA-derived E. coli lead to more severe colitis or inflammatory arthritis, respectively. Collectively, these data reveal the power of IgA-seq to identify immune-reactive resident pathosymbionts that link mucosal and systemic Th17-dependent inflammation and offer microbial and immunophenotype stratification of CD-SpA that may guide medical and biologic therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.