Recent advancements in T cell immunotherapy suggest that T cells engineered with high affinity T cell receptors (TCR) can offer better tumor regression. However, whether a high affinity TCR alone is sufficient to control tumor growth, or the T cell subset bearing the TCR is also important remains unclear. Using the human tyrosinase epitope reactive, CD8 independent, high affinity TCR isolated from MHC class-I restricted CD4+ T cells obtained from tumor infiltrating lymphocytes of a metastatic melanoma patient, we developed a novel TCR transgenic mouse with a C57BL/6 background. This HLA-A2 restricted TCR was positively selected on both CD4+ and CD8+ single-positive (SP) cells. However, when the TCR transgenic mouse was developed with an HLA-A2 background, the transgenic TCR was primarily expressed by CD3+CD4-CD8- double-negative (DN) T cells. TIL 1383I TCR transgenic CD4+, CD8+ and CD4-CD8- T cells were functional and retained the ability to control tumor growth without the need for vaccination or cytokine support in vivo. Furthermore, the HLA-A2+/human tyrosinase TCR double transgenic mice developed spontaneous hair depigmentation and had visual defects that progressed with age. Our data show that the expression of the high affinity TIL 1383I TCR alone in CD3+ T cells is sufficient to control the growth of murine and human melanoma and the presence or absence of CD4 and CD8 co-receptors had little effect on its functional capacity.
Hepatitis C virus (HCV) has been reported to elicit B and T cell immunity in infected patients. Despite the presence of antiviral immunity, many patients develop chronic infections leading to cirrhosis, hepatocellular carcinoma, and liver failure that can require transplantation. We have previously described the presence of HLA-A2-restricted, HCV NS3-reactive cytotoxic T lymphocytes (CTL) in the blood of HLA-A2 ؊ liver transplantation patients that received an HLA-A2 ؉ liver allograft. These T cells are analogous to the "allospecific" T cells
The CD8 coreceptor on T cells has two functions. Namely, CD8 acts to stabilize the binding of the T-cell receptor (TCR) to the peptide-MHC complex while localizing p56 lck (lck) to the TCR/CD3 complex to facilitate early signaling events. Although both functions may be critical for efficient activation of a CTL, little is known about how the structural versus signaling roles of CD8, together with the relative strength of the TCR, influences T-cell function. We have addressed these issues by introducing full-length and truncated versions of the CD8A and CD8B chains into CD8 À Jurkat cell clones expressing cloned TCRs with known antigen specificity and relative affinities. Using a combination of antigen recognition and tetramer-binding assays, we find that the intracellular lck-binding domain of CD8 is critical for enhanced T-cell activation regardless of the relative strength of the TCR. In contrast, the extracellular domain of CD8 seems to be critical for TCRs with lower affinity but not those with higher affinity. Based on our results, we conclude that there are different requirements for CD8 to enhance T-cell function depending on the strength of its TCR. (Cancer Res 2006; 66(23): 11455-61)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.