Glycogen is an important component of whole-body glucose metabolism. MGSKO mice lack skeletal muscle glycogen due to disruption of the GYS1 gene, which encodes muscle glycogen synthase. MGSKO mice were 5-10% smaller than wild-type littermates with less body fat. They have more oxidative muscle fibers and, based on the activation state of AMP-activated protein kinase, more capacity to oxidize fatty acids. Blood glucose in fed and fasted MGSKO mice was comparable to wild-type littermates. Serum insulin was lower in fed but not in fasted MGSKO animals. In a glucose tolerance test, MGSKO mice disposed of glucose more effectively than wild-type animals and had a more sustained elevation of serum insulin. This result was not explained by increased conversion to serum lactate or by enhanced storage of glucose in the liver. However, glucose infusion rate in a euglycemic-hyperinsulinemic clamp was normal in MGSKO mice despite diminished muscle glucose uptake. During the clamp, MGSKO animals accumulated significantly higher levels of liver glycogen as compared with wild-type littermates. Although disruption of the GYS1 gene negatively affects muscle glucose uptake, overall glucose tolerance is actually improved, possibly because of a role for GYS1 in tissues other than muscle. Diabetes 54: 3466 -3473, 2005 A fter a meal, glucose is distributed into various tissues of the body where it can be utilized as an energy source or stored as glycogen (1). Glycogen is a branched polymer of glucose residues connected by ␣-1,4-glycosidic linkages formed by the enzyme glycogen synthase (EC 2.4.1.11) and branchpoints formed via ␣-1,6-glycosidic linkages, introduced by the branching enzyme (EC 2.4.1.18). There are two mammalian isoforms of glycogen synthase. One, encoded by the GYS2 gene, appears to be expressed only in liver (2) while a second gene, GYS1, is expressed in skeletal and cardiac muscle as well as adipose tissue, kidney, and brain (3).Estimates of the contribution of skeletal muscle glycogen to glucose disposal after ingestion of carbohydrate vary. In humans, reports of ingested glucose conversion to muscle glycogen range from ϳ40% (4) up to 90% (5). It is widely accepted that muscle is an important site for glucose disposal and one might hypothesize that, in the absence of muscle glycogen, glucose clearance would be impaired. Consistent with this hypothesis, mutations in the GYS1 gene in humans have been implicated in certain diabetic populations with, for example, the Pro442Ala mutation resulting in decreased muscle glycogen synthase activity (6).We recently described the MGSKO mouse, in which the GYS1 gene is disrupted (7). Analysis of MGSKO mice confirmed the long-held supposition that glycogen synthase is required for glycogen synthesis since these animals were devoid of glycogen in cardiac and skeletal muscle (7). In the present study, we analyzed a number of metabolic parameters in the MGSKO mouse, including whole-body glucose metabolism, with an initial hypothesis that mice lacking the ability to synthesize muscl...
FSH is a critical hormone regulator of gonadal function that is secreted from the pituitary gonadotrope cell. Human patients and animal models with mutations in the LHX3 LIM-homeodomain transcription factor gene exhibit complex endocrine diseases, including reproductive disorders with loss of FSH. We demonstrate that in both heterologous and pituitary gonadotrope cells, specific LHX3 isoforms activate the FSH beta-subunit promoter, but not the proximal LHbeta promoter. The related LHX4 mammalian transcription factor can also induce FSHbeta promoter transcription, but the homologous Drosophila protein LIM3 cannot. The actions of LHX3 are specifically blocked by a dominant negative LHX3 protein containing a Kruppel-associated box domain. Six LHX3-binding sites were characterized within the FSHbeta promoter, including three within a proximal region that also mediates gene regulation by other transcription factors and activin. Mutations of the proximal binding sites demonstrate their importance for LHX3 induction of the FSHbeta promoter and basal promoter activity in gonadotrope cells. Using quantitative methods, we show that the responses of the FSHbeta promoter to activin do not require induction of the LHX3 gene. By comparative genomics using the human FSHbeta promoter, we demonstrate structural and functional conservation of promoter induction by LHX3. We conclude that the LHX3 LIM homeodomain transcription factor is involved in activation of the FSH beta-subunit gene in the pituitary gonadotrope cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.