The irreversible G 1 arrest in senescent human diploid fibroblasts is probably caused by inactivation of the G 1 cyclin-cyclin-dependent kinase (Cdk) complexes responsible for phosphorylation of the retinoblastoma protein (pRb). We show that the Cdk inhibitor p21 Sdi1,Cip1,Waf1, which accumulates progressively in aging cells, binds to and inactivates all cyclin E-Cdk2 complexes in senescent cells, whereas in young cells only p21-free Cdk2 complexes are active. Furthermore, the senescent-cell-cycle arrest occurs prior to the accumulation of the Cdk4-Cdk6 inhibitor p16Ink4a , suggesting that p21 may be sufficient for this event. Accordingly, cyclin D1-associated phosphorylation of pRb at Ser-780 is lacking even in newly senescent fibroblasts that have a low amount of p16. Instead, the cyclin D1-Cdk4 and cyclin D1-Cdk6 complexes in these cells are associated with an increased amount of p21, suggesting that p21 may be responsible for inactivation of both cyclin E-and cyclin D1-associated kinase activity at the early stage of senescence. Moreover, even in the late stage of senescence when p16 is high, cyclin D1-Cdk4 complexes are persistent, albeit reduced by <50% compared to young cells. We also provide new evidence that p21 may play a role in inactivation of the DNA replication factor proliferating cell nuclear antigen during early senescence. Finally, because p16 accumulates in parallel with the increases in senescence-associated -Gal activity and cell volume that characterize the senescent phenotype, we suggest that p16 upregulation may be part of a differentiation program that is turned on in senescent cells. Since p21 decreases after senescence is achieved, this upregulation of p16 may be essential for maintenance of the senescent-cell-cycle arrest.Human diploid fibroblasts (HDF) have a finite proliferative lifespan, at the end of which they are unable to enter S phase in response to mitogenic stimuli. Senescent HDF are also enlarged and flattened and synthesize an altered repertoire of cell-type-specific proteins, suggesting that they have differentiated as well as aged (5). Serum-stimulated senescent HDF fail to phosphorylate the retinoblastoma protein (pRb) (51), an event that is necessary for the release of E2F transcription factors that promote the expression of late G 1 genes whose products are required for S-phase initiation and progression (39, 55). The inhibition of DNA synthesis in senescent nuclei can be overcome by factors or treatments that block or inactivate the inhibitory activity of pRb and its family of related proteins. For example, transfection or microinjection of simian virus 40 (SV40) T antigen into senescent HDF induces DNA synthesis, but this effect is lost when SV40 T antigen deficient in pRb binding is used (22). These data suggest that failure to phosphorylate pRb is a key mechanism for the cell cycle arrest of senescent cells.Phosphorylation of pRb during G 1 phase is carried out by cyclin D-Cdk4 and cyclin D-Cdk6 (cyclin D-Cdk4/6) and cyclin E-Cdk2 complexes (44,50,55). In quiesce...
Cell cycle arrest in G1 in response to ionizing radiation or senescence is believed to be provoked by inactivation of G1 cyclin-cyclin-dependent kinases (Cdks) by the Cdk inhibitor p21(Cip1/Waf1/Sdi1). We provide evidence that in addition to exerting negative control of the G1/S phase transition, p21 may play a role at the onset of mitosis. In nontransformed fibroblasts, p21 transiently reaccumulates in the nucleus near the G2/M-phase boundary, concomitant with cyclin B1 nuclear translocation, and associates with a fraction of cyclin A-Cdk and cyclin B1-Cdk complexes. Premitotic nuclear accumulation of cyclin B1 is not detectable in cells with low p21 levels, such as fibroblasts expressing the viral human papillomavirus type 16 E6 oncoprotein, which functionally inactivates p53, or in tumor-derived cells. Moreover, synchronized E6-expressing fibroblasts show accelerated entry into mitosis compared to wild-type cells and exhibit higher cyclin A- and cyclin B1-associated kinase activities. Finally, primary embryonic fibroblasts derived from p21-/- mice have significantly reduced numbers of premitotic cells with nuclear cyclin B1. These data suggest that p21 promotes a transient pause late in G2 that may contribute to the implementation of late cell cycle checkpoint controls.
T98 and T98G are two related cell lines that were derived from a human glioblastoma multiforma tumor. T98G has almost twice as many chromosomes as T98, suggesting that it is a polyploid variant of T98. Three aspects of control of cellular proliferation were studied in T98 and T98G cells in comparison to WI-38 normal human diploid cells. WI-38 cells have the following properties: (1) they can undergo only a limited number of population doublings in vitro; (2) they cannot proliferate without anchorage; and (3) they become arrested in G1 phase under stationary phase conditions. T98 cells differ from normal cells in all three of these properties, as do many other transformed cell lines. However, the derivative of T98, namely T98G, expresses an unique combination of normal and transformed aspects of the control of cellular proliferation. T98G cells are like normal cells in that they become arrested in G1 phase under stationary phase conditions, yet they also exhibit the transformed characteristics of anchorage independence and immortality. Thus, T98G cells demonstrate that transformation to immortality and anchorage independence can exist without concomitant loss of the normal mechanism for G1 arrest in response to stationary phase conditions. This result supports the hypothesis that each of these three aspects of control of cellular proliferation can be altered independently. Partially transformed cell lines, such as T98G, should be useful for sorting out the biochemical changes associated with transformation in each of these aspects.
Summary NeuroD, an insulin transactivator, is critical for development of the endocrine pancreas, and NeuroD mutations cause MODY6 in humans. To investigate the role of NeuroD in differentiated β cells, we generated mice in which neuroD is deleted in insulin-expressing cells. These mice exhibit severe glucose intolerance. Islets lacking NeuroD respond poorly to glucose and display a glucose metabolic profile similar to immature β cells, featuring increased expression of glycolytic genes and LDH-A, elevated basal insulin secretion and O2 consumption, and overexpression of NPY. Moreover, the mutant islets appear to have defective KATP channel-mediated insulin secretion. Unexpectedly, virtually all insulin in the mutant mice is derived from ins2, whereas ins1 expression is almost extinguished. Overall, these results indicate that NeuroD is required for β cell maturation and demonstrate the importance of NeuroD in the acquisition and maintenance of fully functional glucose responsive β cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.