Summary. Diamond±Blackfan anaemia (DBA) is a constitutional pure red cell aplasia presenting in early childhood. In some patients, neutropenia and/or thrombocytopenia have also been observed during the course of the disease. We have followed 28 patients with steroid-refractory DBA for up to 13 years with serial peripheral blood counts and bone marrow (BM) aspirates and biopsies. In 21/28 (75%) patients, moderate to severe generalized BM hypoplasia developed, with overall cellularities ranging from 0% to 30%. Marrow hypoplasia correlated with the development of neutropenia (9/21; 43%) and/or thrombocytopenia (6/21; 29%) in many patients. No patient had either cytogenetic abnormalities or progressed to acute leukaemia, although one 13-year-old developed marked marrow ®brosis and trilineage dysplasia. We used the in vitro long-term culture-initiating cell (LTC-IC) assay to quantify multilineage, primitive haematopoietic progenitors in a representative subset of these patients. LTC-IC assays showed equivalent frequencies of cobblestone areaforming cells (CAFCs) with a mean of 5?42/10 5 cells 6 1?9 SD and 6?13/10 5 cells 6 2?6 SD in nine patients and six normal controls respectively. The average clonogenic cell output per LTC-IC, however, was signi®cantly lower in DBA patients (mean 2?16 6 1?2 SD vs. 7?36 6 2?7 SD in normal controls, P 0?0008). Our results suggest that the underlying defect in patients with severe refractory DBA may not be limited to the erythroid lineage, as was evidenced by the development of pancytopenia, bone marrow hypoplasia and reduced clonogenic cell output in LTC-IC assays.
Quantitative reverse transcriptase polymerase chain reaction (RT-PCR) was used to determine relative levels of transcripts for MDR1 and the recently described multidrug resistance-associated protein (MRP) in normal lymphohematopoietic cells and in 62 bone marrow aspirates of newly diagnosed and recurrent acute leukemia. Levels of MRP expression in newly diagnosed AML samples were similar to those observed in normal bone marrow cells (CD34-negative and CD34-positive) and in unselected HL60 human promyelocytic leukemia cells, which were used as an internal control throughout this study. In contrast, samples of AML obtained at the time of relapse contained approximately twofold higher levels of MRP RNA (P < .01). Analysis of paired samples, the first obtained at diagnosis and the second at relapse, from 13 acute myelogenous leukemia (AML) and four acute lymphocytic leukemia (ALL) patients showed that MRP expression was increased at the time of relapse in greater than 80% of patients. In contrast, no consistent changes of MDR1 expression at relapse were observed. These results raise the possibility that increased MRP expression might contribute to leukemic relapse.
Hematopoietic depression and subsequent susceptibility to potentially lethal opportunistic infections are well-documented phenomena following radiotherapy. Methods to therapeutically mitigate radiation-induced myelosuppression could offer great clinical value. In vivo studies in our laboratory have demonstrated that interleukin-6 (IL-6) stimulates pluripotent hematopoietic stem cell (CFU-s), granulocyte-macrophage progenitor cell (GM-CFC), and erythroid progenitor cell (CFU-e) proliferation in normal mice. Based on these results, the ability of IL- 6 to stimulate hematopoietic regeneration following radiation-induced hematopoietic injury was also evaluated. C3H/HeN female mice were exposed to 6.5 Gy 60Co radiation and subcutaneously administered either saline or IL-6 (1,000 micrograms/kg) on days 1 through 3 or 1 through 6 postexposure. On days 7, 10, 14, 17, and 22, femoral and splenic CFU-s, GM-CFC, and CFU-e contents and peripheral blood white cell, red cell, and platelet counts were determined. Compared with saline treatment, both 3-day and 6-day IL-6 treatments accelerated hematopoietic recovery; 6-day treatment produced the greater effects. For example, compared with normal control values (N), femoral and splenic CFU-s numbers in IL-6-treated mice 17 days postirradiation were 27% N and 136% N versus 2% N and 10% N in saline-treated mice. At the same time, bone marrow and splenic GM-CFC values were 58% N and 473% N versus 6% N and 196% N in saline-treated mice; bone marrow and splenic CFU-e numbers were 91% N and 250% N versus 31% N and 130% N in saline-treated mice; and peripheral blood white cell, red cell, and platelet values were 210% N, 60% N, and 24% N versus 18% N, 39% N, and 7% N in saline- treated mice. These studies demonstrate that therapeutically administered IL-6 can effectively accelerate multilineage hematopoietic recovery following radiation-induced hematopoietic injury.
Oral PN401 is well tolerated and total doses of 6 g every 6 hours yield sustained levels of URD in the target range of 50 mumol/L. The MTD of FU with PN401 rescue is 1,000 mg/m2 and the recommended dose for phase II trials is 800 mg/m2 given weekly for 6 weeks with dose escalation. Further studies to define better the appropriate interval for PN401 rescue and the appropriate dose of FU when given with biochemical modulation, such as with leucovorin, are indicated.
Summary:Marrow stromal layers were used to investigate the potential role of negative regulators produced by the marrow microenvironment as one potential cause of hematopoietic suppression after chemotherapy and cytokines. Stromal layers were established from marrow of normal or prechemotherapy donors and breast cancer patients after hematological recovery from one cycle of 5-fluorouracil, leucovorin, doxorubicin, and cyclophosphamide and GM-CSF or PIXY321 (GM-CSF/IL-3 fusion protein). Normal donor CD34 + cells were placed in contact with stromal layers, and the number of colony-forming units for granulocytes and macrophages (CFU-GM) was determined. There were 25-79% fewer CFU-GM in post-chemotherapy stromal layer cocultures than in no chemotherapy cocultures. With neutralizing antibody to TNF-␣ the number of CFU-GM in no chemotherapy and post-chemotherapy stromal cocultures was, respectively, 96 ؎ 7% (n = 5) and 142 ؎ 8% (n = 5) of the number with no antibody treatment. PIXY321 and GM-CSF pretreated stromal layers also suppressed production of CFU-GM. Anti-TNF-␣ promoted an increase in CFU-GM numbers from GM-CSF, but not PIXY321, pretreated stromal cocultures. The results demonstrate that post-chemotherapy marrow stromal layers were deficient in supporting in vitro hematopoiesis and suggest that negative regulators induced by chemotherapy and cytokines may be one cause for this defect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.