Meuwissen and collaborators define a novel genetic cause of pseudo-TORCH syndrome, which resembles the sequelae of congenital infection and represents a novel type I interferonopathy.
In recent studies on prenatal testing for Noonan syndrome (NS) in fetuses with an increased nuchal translucency (NT) and a normal karyotype, mutations have been reported in 9-16% of cases. In this study, DNA of 75 fetuses with a normal karyotype and abnormal ultrasound findings was tested in a diagnostic setting for mutations in (a subset of) the four most commonly mutated NS genes. A de novo mutation in either PTPN11, KRAS or RAF1 was detected in 13 fetuses (17.3%). Ultrasound findings were increased NT, distended jugular lymphatic sacs (JLS), hydrothorax, renal anomalies, polyhydramnios, cystic hygroma, cardiac anomalies, hydrops fetalis and ascites. A second group, consisting of anonymized DNA of 60 other fetuses with sonographic abnormalities, was tested for mutations in 10 NS genes. In this group, five possible pathogenic mutations have been identified (in PTPN11 (n ¼ 2), RAF1, BRAF and MAP2K1 (each n ¼ 1)). We recommend prenatal testing of PTPN11, KRAS and RAF1 in pregnancies with an increased NT and at least one of the following additional features: polyhydramnios, hydrops fetalis, renal anomalies, distended JLS, hydrothorax, cardiac anomalies, cystic hygroma and ascites. If possible, mutation analysis of BRAF and MAP2K1 should be considered.
We report on the validation and implementation of the HumanCytoSNP-12 array (Illumina) (HCS) in prenatal diagnosis. In total, 64 samples were used to validate the Illumina platform (20 with a known (sub) microscopic chromosome abnormality, 5 with known maternal cell contamination (MCC) and 39 normal control samples). There were no false-positive or false-negative results. In addition to the diagnostic possibilities of arrayCGH, the HCS allows detection of regions of homozygosity (ROH), triploidy and helps recognising MCC. Moreover, in two cases of MCC, a deletion was correctly detected. Furthermore we found out that only about 50 ng of DNA is required, which allows a reporting time of only 3 days. We also present a prospective pilot study of 61 fetuses with ultrasound abnormalities and a normal karyotype tested with HCS. In 4 out of 61 (6.5%) fetuses, a clinically relevant abnormality was detected. We designed and present pre-test genetic counselling information on categories of possible test outcomes. On the basis of this information, about 90% of the parents chose to be informed about adverse health outcomes of their future child at infancy and childhood, and 55% also about outcomes at an adult stage. The latter issue regarding the right of the future child itself to decide whether or not to know this information needs to be addressed.
BackgroundWe have investigated whether replacing conventional karyotyping by SNP array analysis in cases of foetal ultrasound abnormalities would increase the diagnostic yield and speed of prenatal diagnosis in clinical practice.Findings/resultsFrom May 2009 till June 2011 we performed HumanCytoSNP-12 array (HCS) (http://www.Illumina.com) analysis in 207 cases of foetal structural abnormalities. HCS allows detecting unbalanced genomic abnormalities with a resolution of about 150/200 kb. All cases were selected by a clinical geneticist after excluding the most common aneuploidies by RAD (rapid aneuploidy detection). Pre-test genetic counselling was offered in all cases.In 24/207 (11,6%) foetuses a clinically relevant genetic abnormality was detected. Only 8/24 abnormalities would have been detected if only routine karyotyping was performed. Submicroscopic abnormalities were found in 16/207 (7,7%) cases. The array results were achieved within 1-2 weeks after amniocentesis.ConclusionsPrenatal SNP array testing is faster than karyotyping and allows detecting much smaller aberrations (~0.15 Mb) in addition to the microscopic unbalanced chromosome abnormalities detectable with karyotyping (~ > 5 Mb). Since karyotyping would have missed 66% (16/24) of genomic abnormalities in our cohort, we propose to perform genomic high resolution array testing assisted by pre-test counselling as a primary prenatal diagnostic test in cases of foetal ultrasound abnormalities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.