The tetrahydroisoquinoline (THIQ) moiety is a privileged substructure of many bioactive natural products and semi-synthetic analogues. The plant kingdom manufactures more than 3,000 THIQ alkaloids, including the opioids morphine and codeine. While microbial species have been engineered to synthesize a few compounds from the benzylisoquinoline alkaloid (BIA) family of THIQs, low product titers impede industrial viability and limit access to the full chemical space.Here we report a THIQ platform by increasing yeast production of the central BIA intermediate (S)-reticuline to more than 3 g L -1 , a 38,000-fold improvement over our first-generation strain.Gains in BIA output coincided with the formation of several substituted THIQs derived from host amino acid catabolism. Enabled by this activity, we repurposed the yeast Ehrlich pathway and demonstrate the synthesis of an array of unnatural THIQ scaffolds. This work provides a blueprint for synthesizing new privileged structures and will enable the targeted overproduction of thousands of THIQ products, including natural and semi-synthetic opioids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.