BackgroundHuman coronavirus NL63 (HCoV-NL63) is a globally endemic pathogen causing mild and severe respiratory tract infections with reinfections occurring repeatedly throughout a lifetime.MethodsNasal samples were collected in coastal Kenya through community-based and hospital-based surveillance. HCoV-NL63 was detected with multiplex real-time reverse transcription PCR, and positive samples were targeted for nucleotide sequencing of the spike (S) protein. Additionally, paired samples from 25 individuals with evidence of repeat HCoV-NL63 infection were selected for whole-genome virus sequencing.ResultsHCoV-NL63 was detected in 1.3% (75/5573) of child pneumonia admissions. Two HCoV-NL63 genotypes circulated in Kilifi between 2008 and 2014. Full genome sequences formed a monophyletic clade closely related to contemporary HCoV-NL63 from other global locations. An unexpected pattern of repeat infections was observed with some individuals showing higher viral titers during their second infection. Similar patterns for 2 other endemic coronaviruses, HCoV-229E and HCoV-OC43, were observed. Repeat infections by HCoV-NL63 were not accompanied by detectable genotype switching.ConclusionsIn this coastal Kenya setting, HCoV-NL63 exhibited low prevalence in hospital pediatric pneumonia admissions. Clade persistence with low genetic diversity suggest limited immune selection, and absence of detectable clade switching in reinfections indicates initial exposure was insufficient to elicit a protective immune response.
Background: Endemic and seasonally recurring respiratory viruses are a major cause of disease and death globally. The burden is particularly severe in developing countries. Improved understanding of the source of infection, pathways of spread and persistence in communities would be of benefit in devising intervention strategies. Methods: We report epidemiological data obtained through surveillance of respiratory viruses at nine outpatient health facilities within the Kilifi Health and Demographic Surveillance System, Kilifi County, coastal Kenya, between January and December 2016. Nasopharyngeal swabs were collected from individuals of all ages presenting with acute respiratory infection (ARI) symptoms (up to 15 swabs per week per facility) and screened for 15 respiratory viruses using real-time PCR. Paediatric inpatient surveillance at Kilifi County Hospital for respiratory viruses provided comparative data. Results: Over the year, 5,647 participants were sampled, of which 3,029 (53.7%) were aged <5 years. At least one target respiratory virus was detected in 2,380 (42.2%) of the samples; the most common being rhinovirus 18.6% (1,050), influenza virus 6.9% (390), coronavirus 6.8% (387), parainfluenza virus 6.6% (371), respiratory syncytial virus (RSV) 3.9% (219) and adenovirus 2.7% (155). Virus detections were higher among <5-year-olds compared to older children and adults (50.3% vs 32.7%, respectively; χ 2(1) =177.3, P=0.0001). Frequency of viruses did not differ significantly by facility (χ 2(8) =13.38, P=0.072). However, prevalence was significantly higher among inpatients than outpatients in <5-year-olds for RSV (22.1% vs 6.0%; χ 2(1) = 159.4, P=0.0001), and adenovirus (12.4% vs 4.4%, χ 2(1) =56.6, P=0.0001). Conclusions: Respiratory virus infections are common amongst ARI outpatients in this coastal Kenya setting, particularly in young children. Rhinovirus predominance warrants further studies on the health and socio-economic implications. RSV and adenovirus were more commonly associated with severe disease. Further analysis will explore epidemiological transmission patterns with the addition of virus sequence data.
In February 2012, the novel respiratory syncytial virus (RSV) group A, genotype ON1, was detected in Kilifi County, coastal Kenya. ON1 is characterized by a 72-nt duplication within the highly variable G gene (encoding the immunogenic attachment surface protein). Cases were diagnosed through surveillance of pneumonia in children at the county hospital. Analysis of epidemiologic, clinical, and sequence data of RSV-A viruses detected over 5 RSV seasons (2010/2011 to 2014/2015) indicated the following: 1) replacement of previously circulating genotype GA2 ON1, 2) an abrupt expansion in the number of ON1 variants detected in the 2014/2015 epidemic, 3) recently accumulation of amino acid substitutions within the ON1 duplicated sequence, and 4) no clear evidence of altered pathogenicity relative to GA2. The study demonstrates the public health importance of molecular surveillance in defining the spread, clinical effects, and evolution of novel respiratory virus variants.
Background Rotavirus remains a leading cause of pediatric diarrheal illness and death worldwide. Data on rotavirus vaccine effectiveness in sub-Saharan Africa are limited. Kenya introduced monovalent rotavirus vaccine (RV1) in July 2014. We assessed RV1 effectiveness against rotavirus-associated hospitalization in Kenyan children. Methods Between July 2014 and December 2017, we conducted surveillance for acute gastroenteritis (AGE) in 3 Kenyan hospitals. From children age-eligible for ≥1 RV1 dose, with stool tested for rotavirus and confirmed vaccination history we compared RV1 coverage among rotavirus positive (cases) vs rotavirus negative (controls) using multivariable logistic regression and calculated effectiveness based on adjusted odds ratio. Results Among 677 eligible children, 110 (16%) were rotavirus positive. Vaccination data were available for 91 (83%) cases; 51 (56%) had 2 RV1 doses and 33 (36%) 0 doses. Among 567 controls, 418 (74%) had vaccination data; 308 (74%) had 2 doses and 69 (16%) 0 doses. Overall 2-dose effectiveness was 64% (95% confidence interval [CI], 35%–80%); effectiveness was 67% (95% CI, 30%–84%) for children aged <12 months and 72% (95% CI, 10%–91%) for children aged ≥12 months. Significant effectiveness was seen in children with normal weight for age, length/height for age and weight for length/height; however, no protection was found among underweight, stunted, or wasted children. Conclusions RV1 in the Kenyan immunization program provides significant protection against rotavirus-associated hospitalization which persisted beyond infancy. Malnutrition appears to diminish vaccine effectiveness. Efforts to improve rotavirus uptake and nutritional status are important to maximize vaccine benefit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.