K is an executable semantic framework in which programming languages, calculi, as well as type systems or formal analysis tools can be defined making use of configurations, computations and rules. Configurations organize the system/program state in units called cells, which are labeled and can be nested. Computations carry "computational meaning" as special nested list structures sequentializing computational tasks, such as fragments of program; in particular, computations extend the original language or calculus syntax. K (rewrite) rules generalize conventional rewrite rules by making it explicit which parts of the term they read-only, write-only, or do not care about. This distinction makes K a suitable framework for defining truly concurrent languages or calculi even in the presence of sharing. Since computations can be handled like any other terms in a rewriting environment, that is, they can be matched, moved from one place to another in the original term, modified, or even deleted, K is particularly suitable for defining control-intensive language features such as abrupt termination, exceptions or call/cc. This paper gives an overview of the K framework: what it is, how it can be used, and where it has been used so far. It also proposes and discusses the K definition of Challenge, a programming language that aims at challenging and exposing the limitations of the various existing semantic frameworks.
The problem of testing a linear temporal logic (LTL) formula on a finite execution trace of events, generated by an executing program, occurs naturally in runtime analysis of software. An algorithm which takes a past time LTL formula and generates an efficient dynamic programming algorithm is presented. The generated algorithm tests whether the formula is satisfied by a finite trace of events given as input and runs in linear time, its constant depending on the size of the LTL formula. The memory needed is constant, also depending on the size of the formula. Further optimizations of the algorithm are suggested. Past time operators suitable for writing succinct specifications are introduced and shown definitionally equivalent to the standard operators. This work is part of the PathExplorer project, the objective of which it is to construct a flexible framework for monitoring and analyzing program executions.
This article gives an overview of the, monitoring oriented programming framework (MOP). In MOP, runtime monitoring is supported and encouraged as a fundamental principle for building reliable systems. Monitors are automatically synthesized from specified properties and are used in conjunction with the original system to check its dynamic behaviors. When a specification is violated or validated at runtime, user-defined actions will be triggered, which can be any code, such as information logging or runtime recovery. Two instances of MOP are presented: JavaMOP (for Java programs) and BusMOP (for monitoring PCI bus traffic). The architecture of MOP is discussed, and an explanation of parametric trace monitoring and its implementation is given. A comprehensive evaluation of JavaMOP attests to its efficiency, especially in comparison with similar systems. The implementation of BusMOP is discussed in detail. In general, BusMOP imposes no runtime overhead on the system it is monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.