Dynamic topological logic provides a context for studying the confluence of the topological semantics for S4, topological dynamics, and temporal logic. The topological semantics for S4 is based on topological spaces rather than Kripke frames. In this semantics, is interpreted as topological interior. Thus S4 can be understood as the logic of topological spaces, and can be understood as a topological modality. Topological dynamics studies the asymptotic properties of continuous maps on topological spaces. Let a dynamic topological system be a topological space X together with a continuous function f. f can be thought of in temporal terms, moving the points of the topological space from one moment to the next. Dynamic topological logics are the logics of dynamic topological systems, just as S4 is the logic of topological spaces. Dynamic topological logics are defined for a trimodal language with an S4-ish topological modality (interior), and two temporal modalities, (next) and * (henceforth), both interpreted using the continuous function f. In particular, expresses f 's action on X from one moment to the next, and * expresses the asymptotic behaviour of f .
This paper shows that the interpolation theorem fails in the intuitionistic logic of constant domains. This result refutes two previously published claims that the interpolation property holds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.