Spontaneous regression is a recognized phenomenon in chronic lymphocytic leukemia (CLL) but its biological basis remains unknown. We undertook a detailed investigation of the biological and clinical features of 20 spontaneous CLL regression cases incorporating phenotypic, functional, transcriptomic, and genomic studies at sequential time points. All spontaneously regressed tumors were IGHV-mutated with no restricted IGHV usage or B-cell receptor (BCR) stereotypy. They exhibited shortened telomeres similar to nonregressing CLL, indicating prior proliferation. They also displayed low Ki-67, CD49d, cell-surface immunoglobulin M (IgM) expression and IgM-signaling response but high CXCR4 expression, indicating low proliferative activity associated with poor migration to proliferation centers, with these features becoming increasingly marked during regression. Spontaneously regressed CLL displayed a transcriptome profile characterized by downregulation of metabolic processes as well as MYC and its downstream targets compared with nonregressing CLL. Moreover, spontaneous regression was associated with reversal of T-cell exhaustion features including reduced programmed cell death 1 expression and increased T-cell proliferation. Interestingly, archetypal CLL genomic aberrations including HIST1H1B and TP53 mutations and del(13q14) were found in some spontaneously regressing tumors, but genetic composition remained stable during regression. Conversely, a single case of CLL relapse following spontaneous regression was associated with increased BCR signaling, CLL proliferation, and clonal evolution. These observations indicate that spontaneously regressing CLL appear to undergo a period of proliferation before entering a more quiescent state, and that a complex interaction between genomic alterations and the microenvironment determines disease course. Together, the findings provide novel insight into the biological processes underpinning spontaneous CLL regression, with implications for CLL treatment.
<b><i>Background/Aim:</i></b> An alarming increase in vitamin D deficiency even in sunny regions highlights the need for a better understanding of the genetic background of the vitamin D endocrine system and the molecular mechanisms of gene polymorphisms of the vitamin D receptor (VDR). In this study, the serum levels of 25(OH)D<sub>3</sub> were correlated with common VDR polymorphisms (<i>ApaI, BsmI, FokI</i>, and <i>TaqI</i>) in 98 subjects of a Greek homogeneous rural population. <b><i>Methods:</i></b> 25(OH)D<sub>3</sub> concentration was measured by ultra-HPLC, and the VDR gene polymorphisms were identified by quantitative real-time PCR followed by amplicon high-resolution melting analysis. <b><i>Results:</i></b> Subjects carrying either the B <i>BsmI</i> (OR: 0.52, 95% CI: 0.27–0.99) or t <i>TaqI</i> (OR: 2.06, 95%: 1.06–3.99) allele presented twice the risk for developing vitamin D deficiency compared to the reference allele. Moreover, subjects carrying 1, 2, or all 3 of these genotypes (BB/Bb, Tt/tt, and FF) demonstrated 2-fold (OR: 2.04, 95% CI: 0.42–9.92), 3.6-fold (OR: 3.62, 95% CI: 1.07–12.2), and 7-fold (OR: 6.92, 95% CI: 1.68–28.5) increased risk for low 25(OH)D<sub>3</sub> levels, respectively. <b><i>Conclusions:</i></b> Our findings reveal a cumulative effect of specific VDR gene polymorphisms that may regulate vitamin D concentrations explaining, in part, the paradox of vitamin D deficiency in sunny regions, with important implications for precision medicine.
BL and DLBCL are subtypes of B-cell lymphomas that arise from germinal centre B lymphocytes. Differentiation between BL and DLBCL is critical and can be challenging, as these two types of cancer share the same morphological, immunophenotypic, and genetic characteristics. In this study, we have examined metabolism in BL and DLBCL lymphomas and found distinctive differences in serine metabolism. We show that BL cells consume significantly more extracellular asparagine than DLBCL cells. Using a tracer-based approach, we find that asparagine regulates the serine uptake and serine synthesis in BL and DLBCL cells. Calculation of Differentially Expressed Genes (DEGs) from RNAseq datasets of BL and DLBCL patients show that BL cancers express the genes involved in serine synthesis at a higher level than DLBCL. Remarkably, combined use of an inhibitor of serine biosynthesis pathway and an anticancer drug asparaginase increases the sensitivity of BL cells to extracellular asparagine deprivation without inducing a change in the sensitivity of DLBCL cells to asparaginase. In summary, our study unravels metabolic differences between BL and DLBCL with diagnostic potential which may also open new avenues for treatment.
Acute myeloid leukaemia (AML) cells interact and modulate components of their surrounding microenvironment into their own benefit. Stromal cells have been shown to support AML survival and progression through various mechanisms. Nonetheless, whether AML cells could establish beneficial metabolic interactions with stromal cells is underexplored. By using a combination of human AML cell lines and AML patient samples together with mouse stromal cells and a MLL-AF9 mouse model, here we identify a novel metabolic crosstalk between AML and stromal cells where AML cells prompt stromal cells to secrete acetate for their own consumption to feed the tricarboxylic acid cycle (TCA) and lipid biosynthesis. By performing transcriptome analysis and tracer-based metabolic NMR analysis, we observe that stromal cells present a higher rate of glycolysis when co-cultured with AML cells. We also find that acetate in stromal cells is derived from pyruvate via chemical conversion under the influence of reactive oxygen species (ROS) following ROS transfer from AML to stromal cells via gap junctions. Overall, we present a unique metabolic communication between AML and stromal cells and propose two different molecular targets, ACSS2 and gap junctions, that could potentially be exploited for adjuvant therapy.
SummaryAcute myeloid leukaemia (AML) cells interact and modulate components of their surrounding microenvironment into their own benefit. Stromal cells have been shown to support AML survival and progression through various mechanisms. Nonetheless, it is unclear whether AML cells could establish beneficial metabolic interactions with stromal cells. Here, we identify a novel metabolic crosstalk between AML and stromal cells where AML cells prompt stromal cells to secrete acetate for their own consumption. By performing transcriptome analysis and tracer-based NMR studies, we show that stromal cells present a higher rate of glycolysis, and that the secreted acetate derives from pyruvate via a reactive oxygen species (ROS)-mediated process. Our data also reveals that AML cells transfer ROS to stromal cells using gap junctions. Overall, we present a unique metabolic communication between AML and stromal cells that could be exploited as adjuvant therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.