Nowadays, multi-label classification methods are increasingly required by modern applications, such as protein function classification, music categorization and semantic scene classification. This paper introduces the task of multi-label classification, organizes the sparse related literature into a structured presentation and performs comparative experimental results of certain multi-label classification methods. It also contributes the definition of concepts for the quantification of the multi-label nature of a data set.
Abstract. This paper proposes an ensemble method for multilabel classification. The RAndom k-labELsets (RAKEL) algorithm constructs each member of the ensemble by considering a small random subset of labels and learning a single-label classifier for the prediction of each element in the powerset of this subset. In this way, the proposed algorithm aims to take into account label correlations using single-label classifiers that are applied on subtasks with manageable number of labels and adequate number of examples per label. Experimental results on common multilabel domains involving protein, document and scene classification show that better performance can be achieved compared to popular multilabel classification approaches.
This work studies the task of automatic emotion detection in music. Music may evoke more than one different emotion at the same time. Single-label classification and regression cannot model this multiplicity. Therefore, this work focuses on multi-label classification approaches, where a piece of music may simultaneously belong to more than one class. Seven algorithms are experimentally compared for this task. Furthermore, the predictive power of several audio features is evaluated using a new multi-label feature selection method. Experiments are conducted on a set of 593 songs with six clusters of emotions based on the Tellegen-Watson-Clark model of affect. Results show that multi-label modeling is successful and provide interesting insights into the predictive quality of the algorithms and features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.