This study presents an analysis of autoencoder models for the problems of detecting anomalies in network traffic. Results of the training were assessed using open source software on the UNB ICS IDS 2017 dataset. As deep learning models, we considered standard and variational autoencoder, Deep SSAD approaches for a normal autoencoder (AE-SAD) and a variational autoencoder (VAE-SAD). The constructed deep learning models demonstrated different indicators of anomaly detection accuracy; the best result in terms of the AUC metric of 98% was achieved with VAE-SAD model. In the future, it is planned to continue the analysis of the characteristics of neural network models in cybersecurity problems. One of directions is to study the influence of structure of network traffic on the performance indicators of using deep learning models. Based on the results, it is planned to develop an approach of robust identification of security events based on deep learning methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.