We report a study of referential choice in discourse production, understood as the choice between various types of referential devices, such as pronouns and full noun phrases. Our goal is to predict referential choice, and to explore to what extent such prediction is possible. Our approach to referential choice includes a cognitively informed theoretical component, corpus analysis, machine learning methods and experimentation with human participants. Machine learning algorithms make use of 25 factors, including referent’s properties (such as animacy and protagonism), the distance between a referential expression and its antecedent, the antecedent’s syntactic role, and so on. Having found the predictions of our algorithm to coincide with the original almost 90% of the time, we hypothesized that fully accurate prediction is not possible because, in many situations, more than one referential option is available. This hypothesis was supported by an experimental study, in which participants answered questions about either the original text in the corpus, or about a text modified in accordance with the algorithm’s prediction. Proportions of correct answers to these questions, as well as participants’ rating of the questions’ difficulty, suggested that divergences between the algorithm’s prediction and the original referential device in the corpus occur overwhelmingly in situations where the referential choice is not categorical.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.