The environmental sustainability of beef production is a significant concern within the food production system. Tannins (TANs) can be used to minimize the environmental impact of ruminant production because they can improve ruminal fermentation and ruminants’ lifetime performances and mitigate methane (CH4) emissions. The objective of this study was to evaluate the effects of dietary supplementation with TANs as sustainable natural alternative to reduce the environmental impact on growth performance, rumen fermentation, enteric CH4 emissions, and nitrogen (N) use efficiency of beef cattle through a meta-analysis. A comprehensive search of studies published in scientific journals that investigated the effects of TANs’ supplementation on the variables of interest was performed using the Scopus, Web of Science, and PubMed databases. The data analyzed were extracted from 32 peer-reviewed publications. The effects of TANs were assessed using random-effects statistical models to examine the standardized mean difference (SMD) between TANs’ treatments and control (non-TANs). The heterogeneity was explored by meta-regression and subgroup analysis was performed for the covariates that were significant. TANs’ supplementation did not affect weight gain, feed consumption, feed efficiency, or N use efficiency (p > 0.05). However, it reduced the concentration of ammonia nitrogen in rumen (SMD = −0.508, p < 0.001), CH4 emissions per day (SMD = −0.474, p < 0.01) and per unit dry matter intake (SMD = −0.408, p < 0.01), urinary N excretion (SMD = −0.338, p < 0.05), and dry matter digestibility (SMD = −0.589, p < 0.001). Ruminal propionate (SMD = 0.250) and butyrate (SMD = 0.198) concentrations and fecal N excretion (SMD = 0.860) improved in response to TANs’ supplementation (p < 0.05). In conclusion, it is possible to use TANs as a CH4 mitigation strategy without affecting cattle growth rate. In addition, the shift from urinary to fecal N may be beneficial for environment preservation, as urinary N induces more harmful emissions than fecal N. Therefore, the addition of tannins in the diet of beef cattle could be used as a sustainable natural alternative to reduce the environmental impact of beef production.
The objective of this study was to determine the effects of the supplementation of a polyherbal mixture (HM) on the productive performance, carcass characteristics, meat quality, and the profile of blood metabolites of lambs fed a high-concentrate diet. Thirty-six male Pelibuey lambs (25.21 ± 0.96 kg BW) were housed in individual pens during a 56-day feeding period and were randomly assigned to four treatments: (1) Control (CON): Basal diet without HM; (2) HM1: CON + 1 g of HM kg−1 dry matter (DM); (3) HM2: CON + 2 g of HM kg−1 DM; and (4) HM3: CON + 3 g of HM kg−1 DM. Data were analyzed using the GLM (General Linear Model) procedure of statistical analysis system (SAS), and linear and quadratic effects were tested to evaluate the effects of the HM level. A quadratic increase was observed in the dry matter intake and in daily weight gain (p < 0.05) of lambs fed with HM2 and HM1, respectively. However, final body weight, body condition, carcass characteristics, and meat quality were similar among treatments (p > 0.05). It was observed a linear increase (p < 0.05) in the mean corpuscular hemoglobin concentration. Lymphocytes in blood from lambs supplemented with the HM1 diet increased and segmented neutrophils decreased compared to lambs receiving the CON treatment (p < 0.05). The concentration of uric acid in the blood had a linear increase (p < 0.05) and the serum creatinine level decreased (p < 0.05) as the HM dietary dose increased. In conclusion, dietary inclusion of 2 and 1 g of HM kg−1 of DM improves feed consumption and daily weight gain, respectively, without affecting carcass characteristics, meat quality, and health status on finishing lambs.
The objective of this study was to see how dietary supplementation with essential oils (EOs) affected rumen fermentation, blood metabolites, growth performance and meat quality of beef cattle through a meta-analysis. In addition, a simulation analysis was conducted to evaluate the effects of EOs on the economic and environmental impact of beef production. Data were extracted from 34 peer-reviewed studies and analyzed using random-effects statistical models to assess the weighted mean difference (WMD) between control and EOs treatments. Dietary supplementation of EOs increased (p < 0.01) dry matter intake (WMD = 0.209 kg/d), final body weight (WMD = 12.843 kg), daily weight gain (WMD = 0.087 kg/d), feed efficiency (WMD = 0.004 kg/kg), hot carcass weight (WMD = 5.45 kg), and Longissimus dorsi muscle area (WMD = 3.48 cm2). Lower (p < 0.05) ruminal concentration of ammonia nitrogen (WMD = −1.18 mg/dL), acetate (WMD = −4.37 mol/100 mol) and total protozoa (WMD = −2.17 × 105/mL), and higher concentration of propionate (WMD = 0.878 mol/100 mol, p < 0.001) were observed in response to EOs supplementation. Serum urea concentration (WMD = −1.35 mg/dL, p = 0.026) and haptoglobin (WMD = −39.67 μg/mL, p = 0.031) were lower in cattle supplemented with EOs. In meat, EOs supplementation reduced (p < 0.001) cooking loss (WMD = −61.765 g/kg), shear force (WMD = −0.211 kgf/cm2), and malondialdehyde content (WMD = −0.040 mg/kg), but did not affect pH, color (L* a* and b*), or chemical composition (p > 0.05). Simulation analysis showed that EOs increased economic income by 1.44% and reduced the environmental footprint by 0.83%. In conclusion, dietary supplementation of EOs improves productive performance and rumen fermentation, while increasing the economic profitability and reducing the environmental impact of beef cattle. In addition, supplementation with EOs improves beef tenderness and oxidative stability.
There is an increasing pressure to identify natural feed additives that improve the productivity and health of livestock, without affecting the quality of derived products. The objective of this study was to evaluate the effects of dietary supplementation with essential oils (EOs) on productive performance, rumen parameters, serum metabolites, and quality of products (meat and milk) derived from small ruminants by means of a meta-analysis. Seventy-four peer-reviewed publications were included in the data set. Weighted mean differences (WMD) between the EOs treatments and the control treatment were used to assess the magnitude of effect. Dietary inclusion of EOs increased (p < 0.05) dry matter intake (WMD = 0.021 kg/d), dry matter digestibility (WMD = 14.11 g/kg of DM), daily weight gain (WMD = 0.008 kg/d), and feed conversion ratio (WMD = −0.111). The inclusion of EOs in small ruminants’ diets decreased (p < 0.05) ruminal ammonia nitrogen concentration (WMD = −0.310 mg/dL), total protozoa (WMD = −1.426 × 105/mL), methanogens (WMD = −0.60 × 107/mL), and enteric methane emissions (WMD = −3.93 L/d) and increased ruminal propionate concentration (WMD = 0.726 mol/100 mol, p < 0.001). The serum urea concentration was lower (WMD = −0.688 mg/dL; p = 0.009), but serum catalase (WMD = 0.204 ng/mL), superoxide dismutase (WMD = 0.037 ng/mL), and total antioxidant capacity (WMD = 0.749 U/mL) were higher (p < 0.05) in response to EOs supplementation. In meat, EOs supplementation decreased (p < 0.05) the cooking loss (WMD = −0.617 g/100 g), malondialdehyde content (WMD = −0.029 mg/kg of meat), yellowness (WMD = −0.316), and total viable bacterial count (WMD = −0.780 CFU/g of meat). There was higher (p < 0.05) milk production (WMD = 0.113 kg/d), feed efficiency (WMD = 0.039 kg/kg), protein (WMD = 0.059 g/100 g), and lactose content in the milk (WMD = 0.100 g/100 g), as well as lower somatic cell counts in milk (WMD = −0.910 × 103 cells/mL) in response to EOs supplementation. In conclusion, dietary supplementation with EOs improves productive performance as well as meat and milk quality of small ruminants. In addition, EOs improve antioxidant status in blood serum and rumen fermentation and decrease environmental impact.
The objective of this study was to evaluate the effects of dietary supplementation of a polyherbal mixture (HM) containing saponins, flavonoids, and polysaccharides on productive performance, carcass characteristics and meat quality of lambs during the final fattening period. Thirty-six Dorper × Katahdin lambs (23.27 ± 1.23 kg body weight (BW)) were housed in individual pens and were assigned to four treatments (n = 9) with different doses of HM: 0 (CON), 1 (HM1), 2 (HM2) and 3 (HM3) g of HM kg−1 of DM for 56 days. Data were analysed as a completely randomized design using the MIXED and GLM procedures of statistical analysis system (SAS), and linear and quadratic effects were tested to evaluate the effects of the HM level. DM digestibility decreased in lambs fed HM3 (p < 0.05). There was no effect of HM on daily weight gain, dry matter intake, final BW, feed conversion, carcass characteristics, colour (L* and a*) and meat chemical composition. Meat pH, cooking loss and drip loss increased linearly (p < 0.05) when the HM dose was increased. The Warner-Bratzler shear force (WBSF) of meat was lower (p < 0.05) in lambs fed HM3. In conclusion, dietary inclusion of 3 g HM kg1 of DM improves meat tenderness. However, high doses of HM in the diet may decrease the digestibility of DM and increase the cooking loss and drip loss of lamb meat during the final fattening period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.