Trypanosomatids are protozoan micro-organisms that cause serious health problems in humans and domestic animals. In addition to their medical relevance, these pathogens have novel biological structures and processes. From nuclear DNA transcription to mRNA translation, trypanosomes use unusual mechanisms to control gene expression. For example, transcription by RNAPII (RNA polymerase II) is polycistronic, and only a few transcription initiation sites have been identified so far. The sequences present in the polycistronic units code for proteins having unrelated functions, that is, not involved in a similar metabolic pathway. Owing to these biological constraints, these micro-organisms regulate gene expression mostly by post-transcriptional events. Consequently, the function of proteins that recognize RNA elements preferentially at the 3' UTR (untranslated region) of transcripts is central. It was recently shown that mRNP (messenger ribonucleoprotein) complexes are organized within post-transcriptional operons to co-ordinately regulate gene expression of functionally linked transcripts. In the present chapter we will focus on particular characteristics of gene expression in the so-called TriTryp parasites: Trypanosoma cruzi, Trypanosoma brucei and Leishmania major.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.