Formation of blood vessels during bone regeneration represents a major challenge for tissue engineered constructs. Poor revascularization can lead to scaffold failure and consequently, leads to non-healing fracture. Heparin is known to bind with angiogenic growth factors influencing the process of new blood vessels formation. There are several problems associated with the use of growth factors in clinic such as low stability, uncontrolled delivery to the site, and high price. The aim of the present study was to explore the potential of heparin to produce pro-angiogenic bone regeneration materials. Chitosan/hydroxyapatite freeze-gelled scaffolds were prepared and loaded with heparin. Different concentrations of heparin were successfully loaded onto the scaffolds, its release from the scaffold was analysed by toluidine blue assay and their angiogenic effect was evaluated by chorioallantoic membrane (CAM) assay to determine the optimal concentration of heparin to induce a proangiogenic effect. It was noted that low heparin concentrations exhibited a positive effect, with approximately 28 μg per scaffold indicating a significant increment in blood vessels. The synthesized materials showed no cytotoxic effects when evaluated by using U2OS cell line.
Formation of blood vessels during bone regeneration represents a major challenge for tissue engineered constructs. Poor revascularization can lead to scaffold failure and consequently, leads to non-healing fracture. Heparin is known to bind with angiogenic growth factors influencing the process of new blood vessels formation. There are several problems associated with the use of growth factors in clinic such as low stability, controlled delivery to the site, and price. The aim of the present study was to explore the potential of heparin to produce pro-angiogenic bone regeneration materials. Chitosan/hydroxyapatite freeze-gelled scaffolds were prepared and loaded with heparin. Different concentrations of heparin were successfully loaded onto the scaffolds, its release from the scaffold was analysed by toluidine blue assay and their angiogenic effect was evaluated by chorioallantoic membrane (CAM) assay to determine the optimal concentration of heparin to induce a proangiogenic effect. It was noted that low heparin concentrations exhibited a positive effect, with approximately 28μg per scaffold indicating a significant increment in blood vessels. The synthesized materials showed no cytotoxic effects when evaluated by using U2OS cell line.
Formation of blood vessels during bone regeneration represents a major challenge for tissue engineered constructs. Poor revascularization can lead to scaffold failure and consequently, leads to non-healing fracture. Heparin is known to bind with angiogenic growth factors influencing the process of new blood vessels formation. There are several problems associated with the use of growth factors in clinic such as low stability, controlled delivery to the site, and price. The aim of the present study was to explore the potential of heparin to produce pro-angiogenic bone regeneration materials. Chitosan/hydroxyapatite freeze-gelled scaffolds were prepared and loaded with heparin. Different concentrations of heparin were successfully loaded onto the scaffolds, its release from the scaffold was analysed by toluidine blue assay and their angiogenic effect was evaluated by chorioallantoic membrane (CAM) assay to determine the optimal concentration of heparin to induce a proangiogenic effect. It was noted that low heparin concentrations exhibited a positive effect, with approximately 28 µg per scaffold indicating a significant increment in blood vessels. The synthesized materials showed no cytotoxic effects when evaluated by using U2OS cell line.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.