A novel 75 kDa membrane protein, TIRC7, is described that exhibits a central role in T cell activation in vitro and in vivo. Modulation of TIRC7-mediated signals with specific anti-TIRC7 antibodies in vitro efficiently prevents human T cell proliferation and IL-2 secretion. Moreover, anti-TIRC7 antibodies specifically inhibit type 1 subset specific IFN-gamma expression but spare the type 2 cytokine IL-4. Diminished proliferation but not IFN-gamma secretion is reversible by exogenous rIL-2. An anti-TIRC7 antibody that cross-reacts with the 75 kDa rat homolog exhibits inhibition of rat alloimmune response in vitro and significantly prolongs kidney allograft survival in vivo. Targeting of TIRC7 may provide a novel therapeutic approach for modulation of the immune response.
The membrane protein T cell immune response cDNA 7 (TIRC7) was recently identified and was shown to play an important role in T cell activation. To characterize the function of TIRC7 in more detail, we generated TIRC7-deficient mice by gene targeting. We observed disturbed T and B cell function both in vitro and in vivo in TIRC7−/− mice. Histologically, primary and secondary lymphoid organs showed a mixture of hypo-, hyper-, and dysplastic changes of multiple lymphohemopoietic compartments. T cells from TIRC7−/− mice exhibited significantly increased proliferation and expression of IL-2, IFN-γ, and IL-4 in response to different stimuli. Resting T cells from TIRC7−/− mice exhibited decreased CD62L, but increased CD11a and CD44 expression, suggesting an in vivo expansion of memory/effector T cells. Remarkably, activated T cells from TIRC7−/− mice expressed lower levels of CTLA-4 in comparison with wild-type cells. B cells from TIRC7-deficient mice exhibited significantly higher in vitro proliferation following stimulation with anti-CD40 Ab or LPS plus IL-4. B cell hyperreactivity was reflected in vivo by elevated serum levels of various Ig classes and higher CD86 expression on B cells. Furthermore, TIRC7 deficiency resulted in an augmented delayed-type hypersensitivity response that was also reflected in increased mononuclear infiltration in the skin obtained from TIRC7-deficient mice food pads. In summary, the data strongly support an important role for TIRC7 in regulating both T and B cell responses.
BackgroundCell-based therapies such as autologous chondrocyte implantation are promising therapeutic approaches to treat cartilage defects to prevent further cartilage degeneration. To assure consistent quality of cell-based therapeutics, it is important to be able to predict the biological activity of such products. This requires the development of a potency assay, which assesses a characteristic of the cell transplant before implantation that can predict its cartilage regeneration capacity after implantation. In this study, an ex vivo human cartilage repair model was developed as quality assessment tool for potency and applied to co.don’s chondrosphere product, a matrix-associated autologous chondrocyte implant (chondrocyte spheroids) that is in clinical use in Germany.MethodsChondrocyte spheroids were generated from 14 donors, and implanted into a subchondral cartilage defect that was manually generated in human articular cartilage tissue. Implanted spheroids and cartilage tissue were co-cultured ex vivo for 12 weeks to allow regeneration processes to form new tissue within the cartilage defect. Before implantation, spheroid characteristics like glycosaminoglycan production and gene and protein expression of chondrogenic markers were assessed for each donor sample and compared to determine donor-dependent variation.ResultsAfter the co-cultivation, histological analyses showed the formation of repair tissue within the cartilage defect, which varied in amount for the different donors. In the repair tissue, aggrecan protein was expressed and extra-cellular matrix cartilage fibers were present, both indicative for a cartilage hyaline-like character of the repair tissue. The amount of formed repair tissue was used as a read-out for regeneration capacity and was correlated with the spheroid characteristics determined before implantation. A positive correlation was found between high level of aggrecan protein expression in spheroids before implantation and a higher regeneration potential after implantation, reflected by more newly formed repair tissue.ConclusionThis demonstrated that aggrecan protein expression levels in spheroids before implantation can potentially be used as surrogate potency assay for the cartilage cell transplant to predict its regenerative capacity after implantation in human patients.Electronic supplementary materialThe online version of this article (doi:10.1186/s12967-016-1065-8) contains supplementary material, which is available to authorized users.
Ab targeting of TIRC7 has been shown previously to inhibit T cell proliferation and Th1 lymphocyte-associated cytokine production. In this study, we demonstrate that Ab targeting of TIRC7 induces early cell surface expression of CTLA-4. The majority of stimulated CD4+ and CD8+ human T cells coexpress CTLA-4 and TIRC7. Similar to CTLA-4, TIRC7 rapidly accumulates at the site of Ag adhesion upon T cell activation. TIRC7 seems to colocalize with CTLA-4 in human T cells, and both molecules are associated with clathrin-coated vesicles, indicating they share intracellular transport systems. Moreover, Ab targeting of TIRC7 results in an early activation of CTLA-4 transcription. The inhibition of cell proliferation mediated by TIRC7 is dependent on CTLA-4 expression because the TIRC7-mediated inhibitory effects on cell proliferation and cytokine expression are abolished by Ab blockade of CTLA-4. Splenocytes obtained from CTLA-4-deficient mice are not responsive to TIRC7 Ab targeting. Thus, TIRC7 acts as an upstream regulatory molecule of CTLA-4 expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.