Esterases receive special attention because of their wide distribution in biological systems and environments and their importance for physiology and chemical synthesis. The prediction of esterases' substrate promiscuity level from sequence data and the molecular reasons why certain such enzymes are more promiscuous than others remain to be elucidated. This limits the surveillance of the sequence space for esterases potentially leading to new versatile biocatalysts and new insights into their role in cellular function. Here, we performed an extensive analysis of the substrate spectra of 145 phylogenetically and environmentally diverse microbial esterases, when tested with 96 diverse esters. We determined the primary factors shaping their substrate range by analyzing substrate range patterns in combination with structural analysis and protein-ligand simulations. We found a structural parameter that helps rank (classify) the promiscuity level of esterases from sequence data at 94% accuracy. This parameter, the active site effective volume, exemplifies the topology of the catalytic environment by measuring the active site cavity volume corrected by the relative solvent accessible surface area (SASA) of the catalytic triad. Sequences encoding esterases with active site effective volumes (cavity volume/SASA) above a threshold show greater substrate spectra, which can be further extended in combination with phylogenetic data. This measure provides also a valuable tool for interrogating substrates capable of being converted. This measure, found to be transferred to phosphatases of the haloalkanoic acid dehalogenase superfamily and possibly other enzymatic systems, represents a powerful tool for low-cost bioprospecting for esterases with broad substrate ranges, in large scale sequence data sets.
Subtilisins and other serine proteases are extensively used in the detergent, leather and food industry, and frequently under non-physiological conditions. New proteases with improved performance at extreme temperatures and in the presence of chemical additives may have great economical potential. The increasing availability of genetic sequences from different environments makes homology-based screening an attractive strategy for discovery of new proteases. A prerequisite for large-scale screening of protease-encoding sequences is an efficient screening procedure. We have developed and implemented a screening procedure that encompasses cloning of candidate sequences into multiple expression vectors, cytoplasmic expression in E. coli, and a casein-based functional screen. The procedure is plate-format compatible and can be completed in only four days, starting from the gene of interest in a suitable cloning vector. The expression vector suite includes six vectors with combinations of maltose-binding protein (MBP) or the small ubiquitin-related modifier (SUMO) for increased solubility, and polyhistidine tags for downstream purification. We used enhanced green fluorescent protein and four Bacilli subtilisins to validate the screening procedure and our results show that proteins were expressed, soluble and active. Interestingly, the highest activities were consistently achieved with either MBP or SUMO fusions, thus demonstrating the merit of including solubility tags. In conclusion, the results demonstrate that our approach can be used to efficiently screen for new subtilisins, and suggest that the approach may also be used to screen for proteins with other activities.
Enzymatic processing of fish by-products for recovery of peptides (hydrolysates) is a promising technology to reach food grade ingredients of high nutritional quality. Despite this, their bitter taste and “fish” odor block implementation in food products and limit their economic potential. Trimethylamine (TMA) is a known contributor to malodor in fish. Current strategies to mask or remove the odor are either not effective or give rise to undesirable side effects. As an alternative approach to remediate TMA, we propose a novel enzymatic strategy to convert it into the odorless trimethylamine N-oxide (TMAO) using TMA monooxygenases (Tmms). We identified a diverse set of bacterial Tmms using a sequence similarity network. Purified, recombinant enzymes were assessed for their biocatalytic capacity by monitoring NADPH consumption and TMAO generation. Selected Tmms were subjected to biochemical characterization, and investigated for their ability to oxidize TMA in an industry relevant substrate. From the 45 bacterial Tmm candidates investigated, eight enzymes from four different taxa were selected for their high activity towards TMA. The three most active enzymes were shown to vary in temperature optimum, with the highest being 45 °C. Enzymatic activity dropped at high temperatures, likely due to structural unfolding. The enzymes were all active from pH 6-8.5 with functional stability being lowest around optimal pH. All three Tmms, given sufficient NADPH cofactor, were found to generate TMAO in the TMA rich salmon protein hydrolysate. The Tmms serve as unique starting points for engineering and should be useful for guiding process development for marine biorefineries. Importance Enzyme-based conversion of marine biomass to high quality peptide ingredients leaves a distinct smell of “fish” caused by the presence of trimethylamine, which is limiting their economic potential. We suggest an enzymatic solution for converting trimethylamine to the odorless trimethylamine N-oxide as a novel strategy to improve the smell quality of marine protein hydrolysates. Following a systematic investigation of 45 putative bacterial trimethylamine monooxygenases from several phyla, we expand the repertoire of known active trimethylamine monooxygenases. As a proof-of-concept, we demonstrate that three of these enzymes oxidized trimethylamine in an industry-relevant salmon protein hydrolysate. Our results add new oxidoreductases to the industrial biocatalytic toolbox, and provide a new point of departure for enzyme process developments in marine biorefineries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.