The Gittins scheduling policy minimizes the mean response in the single-server M/G/1 queue in a wide variety of settings. Most famously, Gittins is optimal when preemption is allowed and service requirements are unknown but drawn from a known distribution. Gittins is also optimal much more generally, adapting to any amount of available information and any preemption restrictions. However, scheduling to minimize mean response time in a multiserver setting, specifically the central-queue M/G/k, is a much more difficult problem. In this work we give the first general analysis of Gittins in the M/G/k. Specifically, we show that under extremely general conditions, Gittins's mean response time in the M/G/k is at most its mean response time in the M/G/1 plus an $O(łog(1/(1 - ρ)))$ additive term, where ρ is the system load. A consequence of this result is that Gittins is heavy-traffic optimal in the M/G/k if the service requirement distribution S satisfies $\mathbfE [S^2(łog S)^+] < \infty$. This is the most general result on minimizing mean response time in the M/G/k to date. To prove our results, we combine properties of the Gittins policy and Palm calculus in a novel way. Notably, our technique overcomes the limitations of tagged job methods that were used in prior scheduling analyses.
The First-Come First-Served (FCFS) scheduling policy is the most popular scheduling algorithm used in practice. Furthermore, its usage is theoretically validated: for light-tailed job size distributions, FCFS has weakly optimal asymptotic tail of response time. But what if we don't just care about the asymptotic tail? What if we also care about the 99th percentile of response time, or the fraction of jobs that complete in under one second? Is FCFS still best? Outside of the asymptotic regime, only loose bounds on the tail of FCFS are known, and optimality is completely open. In this paper, we introduce a new policy, Nudge, which is the first policy to provably stochastically improve upon FCFS. We prove that Nudge simultaneously improves upon FCFS at every point along the tail, for light-tailed job size distributions. As a result, Nudge outperforms FCFS for every moment and every percentile of response time. Moreover, Nudge provides a multiplicative improvement over FCFS in the asymptotic tail. This resolves a long-standing open problem by showing that, counter to previous conjecture, FCFS is not strongly asymptotically optimal.
Load balancing systems, comprising a central dispatcher and a scheduling policy at each server, are widely used in practice, and their response time has been extensively studied in the theoretical literature. While much is known about the scenario where the scheduling at the servers is First-Come-First-Served (FCFS), to minimize mean response time we must use Shortest-Remaining-Processing-Time (SRPT) scheduling at the servers. Much less is known about dispatching polices when SRPT scheduling is used. Unfortunately, traditional dispatching policies that are used in practice in systems with FCFS servers often have poor performance in systems with SRPT servers. In this paper, we devise a simple fix that can be applied to any dispatching policy. This fix, called guardrails, ensures that the dispatching policy yields optimal mean response time under heavy traffic when used in a system with SRPT servers. Any dispatching policy, when augmented with guardrails, becomes heavy-traffic optimal. Our results yield the first analytical bounds on mean response time for load balancing systems with SRPT scheduling at the servers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.