Small Cell Lung Cancer (SCLC) tumors are heterogeneous mixtures of transcriptional subtypes. Understanding subtype dynamics could be key to explaining the aggressive properties that make SCLC a recalcitrant cancer. Applying archetype analysis and evolutionary theory to bulk and single-cell transcriptomics, we show that SCLC cells reside within a cell-state continuum rather than in discrete subtype clusters. Gene expression signatures and ontologies indicate each vertex of the continuum corresponds to a functional phenotype optimized for a cancer hallmark task: three neuroendocrine archetypes specialize in proliferation/survival, inflammation and immune evasion, and two non-neuroendocrine archetypes in angiogenesis and metabolic dysregulation. Single cells can trade-off between these defined tasks to increase fitness and survival. SCLC cells can easily transition from specialists that optimize a single task to generalists that fall within the continuum, suggesting that phenotypic plasticity may be a mechanism by which SCLC cells become recalcitrant to treatment and adaptable to diverse microenvironments. We show that plasticity is uncoupled from the phenotype of single cells using a novel RNA-velocity-based metric, suggesting both specialist and generalist cells have the capability of becoming destabilized and transitioning to other phenotypes. We use network simulations to identify transcription factors such as MYC that promote plasticity and resistance to treatment. Our analysis pipeline is suitable to elucidate the role of phenotypic plasticity in any cancer type, and positions SCLC as a prime candidate for treatments that target plasticity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.