Controlling dissolved phosphorus (P) losses to surface waters is challenging as most conservation practices are only effective at preventing particulate P losses. As a result, P removal structures were developed to filter dissolved P from drainage water before reaching a water body. While many P removal structures with different P sorption materials (PSMs) have been constructed over the past two decades, there remains a need to evaluate their performances and compare on a normalized basis. The purpose of this review was to compile performance data of pilot and field-scale P removal structures and present techniques for normalization and comparison. Over 40 studies were normalized by expressing cumulative P removal as a function of cumulative P loading to the contained PSM. Results were further analyzed as a function of retention time (RT), inflow P concentration, and type of PSM. Structures treating wastewater were generally more efficient than non-point drainage water due to higher RT and inflow P concentrations. For Ca-rich PSMs, including slag, increased RT allowed for greater P removal. Among structures with low RT and inflow P concentrations common to non-point drainage, Fe-based materials had an overall higher cumulative removal efficiency compared to non-slag and slag materials.
The hydroxyl radical (·OH) is a powerful oxidant that is produced in a wide range of environments via the Fenton reaction (Fe2+ + H2O2 → Fe3+ + ·OH + OH-). The reactants are formed from the reduction of Fe3+ and O2, which may be promoted by organic reductants, such as hydroquinones. The aim of this study was to investigate the extent of ·OH formation in reactions between 2,6-dimethoxyhydroquinone (2,6-DMHQ) and iron oxide nanoparticles. We further compared the reactivities of ferrihydrite and goethite and investigated the effects of the O2 concentration and pH on the generation of ·OH. The main finding was that the reactions between 2,6-DMHQ and iron oxide nanoparticles generated substantial amounts of ·OH under certain conditions via parallel reductive dissolution and catalytic oxidation reactions. The presence of O2 was essential for the catalytic oxidation of 2,6-DMHQ and the generation of H2O2. Moreover, the higher reduction potential of ferrihydrite relative to that of goethite made the former species more susceptible to reductive dissolution, which favored the production of ·OH. The results highlighted the effects of surface charge and ligand competition on the 2,6-DMHQ oxidation processes and showed that the co-adsorption of anions can promote the generation of ·OH.
Hydroquinones are important mediators of electron transfer reactions in soils with a capability to reduce Fe(III) minerals and molecular oxygen, and thereby generating Fenton chemistry reagents. This study focused on 2,6-dimethoxy hydroquinone (2,6-DMHQ), an analogue to a common fungal metabolite, and its reaction with ferrihydrite and goethite under variable pH and oxygen concentrations. Combined wet-chemical and spectroscopic analyses showed that both minerals effectively oxidized 2,6-DMHQ in the presence of oxygen. Under anaerobic conditions the first-order oxidation rate constants decreased by one to several orders of magnitude depending on pH and mineral. Comparison between aerobic and anaerobic results showed that ferrihydrite promoted 2,6-DMHQ oxidation both via reductive dissolution and heterogeneous catalysis while goethite mainly caused catalytic oxidation. These results were in agreement with changes in the reduction potential (E) of the Fe(III) oxide/Fe(II) redox couple as a function of dissolved Fe(II) where E of goethite was lower than ferrihydrite at any given Fe(II) concentration, which makes ferrihydrite more prone to reductive dissolution by the 2,6-DMBQ/2,6-DMHQ redox couple. This study showed that reactions between hydroquinones and iron oxides could produce favorable conditions for formation of reactive oxygen species, which are required for nonenzymatic Fenton-based decomposition of soil organic matter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.