Phlebotropic flavonoids, including diosmin and its aglycone diosmetin, are natural polyphenols widely used in the prevention and treatment of chronic venous insufficiency (CVI). As oxidative stress plays an important role in the development of pathophysiology of the cardiovascular system, the study aimed to investigate the protective effects of diosmin and diosmetin on hydrogen peroxide (H2O2)-induced oxidative stress in endothelial cells. The cells were pretreated with different concentrations of the flavonoid prior to the H2O2 exposure. The cell viability, the level of intracellular reactive oxygen species (ROS), the activity of cellular antioxidant enzymes—including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase GPx—and the malondialdehyde (MDA) level were assessed. It was found that the H2O2-induced oxidative stress was ameliorated by diosmin/diosmetin in a concentration-dependent manner. The flavonoids restored the activity of cellular antioxidant enzymes and lowered the MDA level upregulated by the H2O2 exposure. These results indicate that diosmin and diosmetin may prevent oxidative stress in endothelial cells; therefore, they may protect against the development and progression of oxidative-stress-related disorders.
Abdominal aortic aneurysm (AAA) is a chronic vascular disease caused by localized weakening and broadening of the abdominal aorta. AAA is a clearly underdiagnosed disease and is burdened with a high mortality rate (65–85%) from AAA rupture. Studies indicate that abnormal regulation of angiogenesis and inflammation contributes to progression and onset of this disease; however, dysregulations in the molecular pathways associated with this disease are not yet fully explained. Therefore, in our study, we aimed to identify dysregulations in the key regulators of angiogenesis and inflammation in patients with AAA in peripheral blood mononuclear cells (using qPCR) and plasma samples (using ELISA). Expression levels of ANGPT1, CXCL8, PDGFA, TGFB1, VEGFB, and VEGFC and plasma levels of TGF-alpha, TGF-beta 1, VEGF-A, and VEGF-C were found to be significantly altered in the AAA group compared to the control subjects without AAA. Associations between analyzed factors and risk factors or biochemical parameters were also explored. Any of the analyzed factors was associated with the size of the aneurysm. The presented study identified dysregulations in key angiogenesis- and inflammation-related factors potentially involved in AAA formation, giving new insight into the molecular pathways involved in the development of this disease and providing candidates for biomarkers that could serve as diagnostic or therapeutic targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.