We consider the problem of determining appropriate solvency capital requirements for an insurance company or a financial institution. We demonstrate that the subadditivity condition that is often imposed on solvency capital principles can lead to the undesirable situation where the shortfall risk increases by a merger. We propose to complement the subadditivity condition by a "regulator's condition". We find that for an explicitly specified confidence level, the Value-at-Risk satisfies the regulator's condition and is the "most efficient" capital requirement in the sense that it minimizes some reasonable cost function. Within the class of concave distortion risk measures, of which the elements, in contrast to the Value-at-Risk, exhibit the subadditivity property, we find that, again for an explicitly specified confidence level, the Tail-Value-at-Risk is the optimal capital requirement satisfying the regulator's condition. Copyright (c) The Journal of Risk and Insurance, 2008.
We investigate lower and upper bounds for right tails (stop-loss premiums) of deterministic and stochastic sums of nonindependent random variables. The bounds are derived using the concepts of comonotonicity, convex order, and conditioning. The performance of the presented approximations is investigated numerically for individual life annuity contracts as well as for life annuity portfolios, where mortality is modeled by Makeham's law, whereas investment returns are modeled by a Brownian motion process. Copyright (c) The Journal of Risk and Insurance, 2009.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.