Diet-induced obesity is associated with fatty liver, insulin resistance, leptin resistance, and changes in plasma lipid profile. Endocannabinoids have been implicated in the development of these associated phenotypes, because mice deficient for the cannabinoid receptor CB 1 (CB1 -/-) do not display these changes in association with diet-induced obesity. The target tissues that mediate these effects, however, remain unknown. We therefore investigated the relative role of hepatic versus extrahepatic CB 1 receptors in the metabolic consequences of a high-fat diet, using liver-specific CB 1 knockout (LCB1 -/-) mice. LCB1 -/-mice fed a high-fat diet developed a similar degree of obesity as that of wild-type mice, but, similar to CB1 -/-mice, had less steatosis, hyperglycemia, dyslipidemia, and insulin and leptin resistance than did wild-type mice fed a high-fat diet. CB 1 agonistinduced increase in de novo hepatic lipogenesis and decrease in the activity of carnitine palmitoyltransferase-1 and total energy expenditure were absent in both CB1 -/-and LCB1 -/-mice. We conclude that endocannabinoid activation of hepatic CB 1 receptors contributes to the diet-induced steatosis and associated hormonal and metabolic changes, but not to the increase in adiposity, observed with high-fat diet feeding. Theses studies suggest that peripheral CB 1 receptors could be selectively targeted for the treatment of fatty liver, impaired glucose homeostasis, and dyslipidemia in order to minimize the neuropsychiatric side effects of nonselective CB 1 blockade during treatment of obesity-associated conditions.
SUMMARY Obesity-related leptin resistance manifests in loss of leptin’s ability to reduce appetite and increase energy expenditure. Obesity is also associated with increased activity of the endocannabinoid system, and CB1 receptor (CB1R) inverse agonists reduce body weight and the associated metabolic complications, although adverse neuropsychiatric effects halted their therapeutic development. Here we show that in mice with diet-induced obesity (DIO), the peripherally restricted CB1R inverse agonist JD5037 is equieffective with its brain-penetrant parent compound in reducing appetite, body weight, hepatic steatosis, and insulin resistance, even though it does not occupy central CB1R or induce related behaviors. Appetite and weight reduction by JD5037 are mediated by resensitizing DIO mice to endogenous leptin through reversing the hyperleptinemia by decreasing leptin expression and secretion by adipocytes and increasing leptin clearance via the kidney. Thus, inverse agonism at peripheral CB1R not only improves cardiometabolic risk in obesity but has antiobesity effects by reversing leptin resistance.
Type 2 diabetes mellitus (T2DM) progresses from compensated insulin resistance to beta ceil failure resulting in uncompensated hyperglycemia, a process replicated in the Zucker diabetic fatty (ZDF) rat. The Nlrp3 inflammasome has been implicated in obesity-induced insulin resistance and beta cell failure. Endocannabinoids contribute to insuiin resistance through activation of peripheral CB1 receptors (CB1Rs) and also promote beta cell failure. Here we show that beta cell failure in adult ZDF rats is not associated with CB1R signaling in beta ceils, but rather in M1 macrophages infiltrating into pancreatic islets, and that this leads to activation of the Nlrp3-ASC inflammasome in the macrophages. These effects are replicated in vitro by incubating wild-type human or rodent macrophages, but not macrophages from CB1R-deficient [Cnr1−/−) or Nlrp3−/− mice, with the endocannabinoid anandamide. Peripheral CB1R blockade, in vivo depletion of macrophages or macrophage-specific knockdown of CB1R reverses or prevents these changes and restores normoglycemia and glucose-induced insulin secretion. These findings implicate endocannabinoids and inflammasome activation in beta cell failure and identify macrophage-expressed CB1R as a therapeutic target in T2DM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.