This paper proposes the use of X-ray computed tomography (µCT, xCT) measurements together with finite element method (FEM) numerical modelling to assess bond failures mechanism of fiber-reinforced fine-grain concrete. Fiber-reinforced concrete is becoming popular for application in civil engineering structures. A dynamically developing topic related to concretes is the determination of bond characteristics. Nowadays, modern technologies allow inspecting the inside of the element without the need to damage its structure. This paper discusses the application of computed tomography in order to identify damage occurring in the structure of fiber-reinforced fine-grain concrete during bond failure tests. The publication is part of a larger study to determine the bonding properties of Ukrainian steel fibers in fine-grain concrete. The authors focused on the visual evaluation of sections obtained from tomographic data. Separately, the results of volumetric analysis were presented to quantitatively assess the changes occurring in the matrix structure. Finite element analysis is an addition to the substantive part and allows us to compare real damage areas with theoretical stress concentration areas. The result of the work is the identification of a path that allows verification of the locations where matrix destruction occurs.
This paper proposes the use of terrestrial laser scanning (TLS) measurements together with finite element method (FEM) numerical modeling to assess the current technical condition. The main aim of the paper was to evaluate the effect of point cloud size reduction on the quality of the geometric model and the ability to represent the corrosion level in assessing its load-carrying capacity. In this study, a standard scanning was performed on a historical object and a point cloud of a selected corroded element was generated. In order to further process the data, gradual reductions were made in the number of points from which meshes representing the geometry of the selected beam were created. Inaccuracy analyses of the meshes generated on the reduced point clouds were performed. Numerical analysis was then conducted for the selected mesh generated from the reduced point cloud. The results identified the locations of maximum stresses. The presented analysis showed that by developing the presented measurement and computational technique, laser scanning can be used to determine the degree of corrosion of hard-to-reach steel elements.
For several years there has been widespread and open discussion about climate problems and human responsibility for the generated waste. The number of regulations has led to a search for applications for by-products of combustion. Moreover, the forecasted economic crisis additionally motivates to use every possible material to reduce the cost of manufacturing activities. Efficient waste management is a key element for Polish companies in their efforts to reduce their negative impact on the environment. Fluid combustion of fuels in the Polish power and heat industry still belongs to relatively new technologies. Despite the application of the most technologically advanced processing methods, bottom ashes from fluidized bed boilers are still reluctantly used. The author sees possibilities of using bottom ashes in geotechnical works. The aim of this review is to present the existing source papers relating to the use of bottom ashes in construction processes. A particular area of interest is the use of said ashes in jet-grouting (JG). The paper briefly refers to fluidized bed combustion technology as a source of combustion byproducts. The author pay special attention to the characteristics defining the characteristics of the ashes. The reader's attention will then be drawn to jet-grouting technology. References can be found to the methodology of general cement-soil testing. Due to the nature of the use of JG, the focus is particularly on their strength, water-permeability and frost resistance properties. Due to the need to determine the internal structure of the cement-ground, attention was also paid to the possibility of using X-ray computed tomography for soil cement testing.
The paper refers to studies of the structure of high-performance concrete with polypropylene fibre at different dosages. The authors see a research gap in the study of the effect of adding polypropylene fibre on the parameters of concrete exposed to high temperatures. The study takes into account the thermal effect—groups of samples were heated to 200 °C, 400 °C and 600 °C. The authors carried out basic tests to describe the changes in density, ultrasonic tests, uniaxial compression strength tests and tensile tests by splitting. The positive effect of polypropylene fibres is mainly observed between 20 °C and 200 °C. The melting of polypropylene fibres causes a delay in the development of micro-cracks in the structure of these concretes compared to HPC. Adding polypropylene fibres to the mixtures also increased the speed of ultrasonic wave propagation in the medium. The research was deepened with tomographic imaging. A description of the splitting surface was carried out. The results of tensile by splitting tests clearly show an increase in the relative failure area for unheated concretes in proportion to the number of fibres used. Changes in splitting surfaces under the influence of temperature are graphically illustrated. Furthermore, differences in the samples under the influence of heating at high temperatures are presented. Finally, the porosity development of all sample groups before and after heating at all temperatures is described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.