In this paper, a model-free methodology for off-line identification of modifications of structural mass is proposed and verified experimentally. The methodology of the virtual distortion method is used: the modifications are modeled by the equivalent pseudo-loads that act in the related degrees of freedom of the unmodified structure; their influence on the response is computed using a convolution of the pseudo-loads with the experimentally obtained local impulse responses. As a result, experimentally measured data are directly used to model the response of the modified structure in a non-parametric way. The approach obviates the need for a parametric numerical model of the structure and for laborious initial updating of its parameters. Moreover, no topological information about the structure is required, besides potential locations of the modifications. The identification is stated as a problem of minimization of the discrepancy between the measured and the modeled responses of the modified structure. The formulation allows the adjoint variable method to be used for a quick first-and second-order sensitivity analysis, so that Hessianbased optimization algorithms can be used for fast convergence. The proposed methodology was experimentally verified using a 3D truss structure with 70 elements. Mass modifications in a single node and in two nodes were considered. Given the initially measured local impulse responses, a single sensor and single excitation were sufficient for the identification.
This contribution reviews the challenges in adaptive self-protection of structures. A proper semi-active control strategy can significantly increase structural ability to absorb impact-type loads and damp the resulting vibrations. Discussed systems constitute a new class of smart structures capable of a real-time identification of loads and vibration patterns, followed by a low-cost optimum absorption of the energy by structural adaptation. Given the always surging quest for safety, such systems have a great potential for practical applications (in landing gears, road barriers, space structures, etc.). Compared to passive systems, their better performance can be attributed to the paradigm of self-adaptivity, which is ubiquitous in nature, but still sparsely applied in structural engineering. Being in the early stages of development, their ultimate success depends on a concerted effort in facing a number of challenges. This contribution discusses some of the important problems, including these of a conceptual, technological, methodological and software engineering nature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.