Amniotes possess variability in sex determination, from environmental sex determination (ESD), where no sex chromosomes are present, to genotypic sex determination (GSD) with highly differentiated sex chromosomes. Some evolutionary scenarios postulate high stability of differentiated sex chromosomes and rare transitions from GSD to ESD. However, sex chromosome turnovers and two independent transitions from highly differentiated ZZ/ZW sex chromosomes to ESD were previously reported in the lacertid lizards. Here, we examined the homology of sex chromosomes in the wide phylogenetic spectrum of lacertids and their outgroups by comparing gene copy numbers between sexes in genes previously found to be Z-specific in some lacertids. Our current sampling covers 45 species from 26 genera including lineages supposed to possess a derived sex determining systems. We found that all tested lacertids share homologous differentiated ZZ/ZW sex chromosomes, which were present already in their common ancestor living around 85 million years ago. These differentiated sex chromosomes are not present in amphisbaenians and teiid lizards, the close relatives of lacertids. Our study demonstrates how inaccuracies in data can influence the outcome of phylogenetic reconstructions of evolution of sex determination, in this case they overestimated the number of shifts from GSD to ESD and the rate in turnovers of sex chromosomes.
Lacertid lizards are a widely radiated group of squamate reptiles with long-term stable ZZ/ZW sex chromosomes. Despite their family-wide homology of Z-specific gene content, previous cytogenetic studies revealed significant variability in the size, morphology, and heterochromatin distribution of their W chromosome. However, there is little evidence about the accumulation and distribution of repetitive content on lacertid chromosomes, especially on their W chromosome. In order to expand our knowledge of the evolution of sex chromosome repetitive content, we examined the topology of telomeric and microsatellite motifs that tend to often accumulate on the sex chromosomes of reptiles in the karyotypes of 15 species of lacertids by fluorescence in situ hybridization (FISH). The topology of the above-mentioned motifs was compared to the pattern of heterochromatin distribution, as revealed by C-banding. Our results show that the topologies of the examined motifs on the W chromosome do not seem to follow a strong phylogenetic signal, indicating independent and species-specific accumulations. In addition, the degeneration of the W chromosome can also affect the Z chromosome and potentially also other parts of the genome. Our study provides solid evidence that the repetitive content of the degenerated sex chromosomes is one of the most evolutionary dynamic parts of the genome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.