Innovative road signs that can autonomously display the speed limit in cases where the traffic situation requires it are under development. The autonomous road sign contains many types of sensors, of which the subject of interest in this article is the Doppler sensor that we have improved and the constructed and calibrated acoustic probe. An algorithm for performing vehicle detection and tracking, as well as vehicle speed measurement, in a signal acquired with a continuous wave Doppler sensor, is discussed. A method is also experimentally presented and studied for counting vehicles and for determining their movement direction by means of acoustic vector sensor application. The assumptions of the method employing spatial distribution of sound intensity determined with the help of an integrated three-dimensional (3D) sound intensity probe are discussed. The enhanced Doppler radar and the developed sound intensity probe were used for the experiments that are described and analyzed in the paper.
A novel approach to detection of stationary objects in the video stream is presented. Stationary objects are these separated from the static background, but remaining motionless for a prolonged time. Extraction of stationary objects from images is useful in automatic detection of unattended luggage. The proposed algorithm is based on detection of image regions containing foreground image pixels having stable values in time and checking their correspondence with the detected moving objects. In the first stage of the algorithm, stability of individual pixels belonging to moving objects is tested using a model constructed from vectors. Next, clusters of pixels with stable color and brightness are extracted from the image and related to contours of the detected moving objects. This way, stationary (previously moving) objects are detected. False contours of objects removed from the background are also found and discarded from the analysis. The results of the algorithm may be analyzed further by the classifier, separating luggage from other objects, and the decision system for unattended luggage detection. The main focus of the paper is on the algorithm for extraction of stable image regions. However, a complete framework for unattended luggage detection is also presented in order to show that the proposed approach provides data for successful event detection. The results of experiments in which the proposed algorithm was validated using both standard datasets and video recordings from a real airport security system are presented and discussed.
Constant monitoring of road traffic is important part of modern smart city systems. The proposed method estimates average speed of road vehicles in the observation period, using a passive acoustic vector sensor. Speed estimation based on sound intensity analysis is a novel approach to the described problem. Sound intensity in two orthogonal axes is measured with a sensor placed alongside the road. Position of the apparent sound source when a vehicle passes by the sensor is estimated by means of sound intensity analysis in three frequency bands: 1 kHz, 2 kHz and 4 kHz. The position signals calculated for each vehicle are averaged in the analysis time frames, and the average speed estimate is calculated using a linear regression. The proposed method was validated in two experiments, one with controlled vehicle speed and another with real, unrestricted traffic. The calculated speed estimates were compared with the reference lidar and radar sensors. Average estimation error from all experiment was 1.4% and the maximum error was 3.2%. The results confirm that the proposed method allow for estimation of time-averaged road traffic speed with accuracy sufficient for gathering traffic statistics, e.g., in a smart city monitoring station.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.